• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Potent antimicrobial found that shows promise in fighting staph infections

Bioengineer by Bioengineer
November 25, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Staph infections are the leading cause of antimicrobial resistance, particularly the Methicillin-resistant (MRSA)

IMAGE

Credit: McMaster University

Hamilton, ON (Nov. 25, 2019) – Research led by scientists from McMaster University has yielded a potent antimicrobial that works against the toughest infectious disease strains. The find could be the beginning of developing new therapeutics to combat drug-resistant infections.

The discovery is important as it is directly related to the development of Staphylococcus aureus diseases, known popularly as staph infections, which are the leading cause of the growing global danger of antimicrobial resistance, particularly the Methicillin-resistant (MRSA) strains which are becoming resistant to all current antibiotics.

“This antimicrobial has a very exciting mode of action, kind of like hitting many birds with one stone,” said Eric Brown, senior author and a professor of biochemistry and biomedical sciences at McMaster. “This provides a promising starting point.”

After screening thousands of small molecules, the research team discovered a potent new antimicrobial they are calling MAC-545496 that is active against MRSA. Unlike conventional antibiotics, this new antimicrobial neither kills the staph infection nor halts its growth on its own, so the potential for antimicrobial resistance may be considerably lessened.

MAC-545496 cripples MRSA’s ability to cause infection by diminishing its tolerance to the hostile components of the immune system and blocking the bacterium’s capacity to resist the action of several front-line antibiotics.

To be more specific, the antimicrobial disarms MRSA from an important protein called GraR which enables the staph infection to respond to external threats, and allows the immune system to clear the infection more effectively. It also inhibits the ability of the MRSA to resist treatment by antibiotics.

First author Omar El-Halfawy, a postdoctoral fellow of biochemistry and biomedical sciences at McMaster, added: “We screened about 45,000 different compounds and found this potent bioactive, it’s the needle in the haystack. But, although it will be a long road between this discovery and clinical use, we feel we’re expanding our arsenal for combatting drug-resistant staph infections.”

###

Brown and El-Halfawy are also members of the Michael G. DeGroote Institute for Infectious Disease Research at McMaster.

The study, published today in the journal Nature Chemical Biology, was funded by the Canadian Institutes of Health Research and GlycoNet, the Canadian Glycomics Network which is one of the federally-supported networks of centres of excellence of Canada.

For more information:

Veronica McGuire

Media Coordinator

Faculty of Health Sciences

McMaster University

[email protected]

905-525-9140, ext. 22169

Media Contact
Veronica McGuire
[email protected]
905-525-9140 x22169

Tags: BiochemistryInfectious/Emerging DiseasesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.