• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How plants handle stress

Bioengineer by Bioengineer
November 20, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international research team including Göttingen University investigates evolutionary development

IMAGE

Credit: Jan de Vries


Plants get stressed too. Environmental factors such as drought or a high concentration of salt in the soil disrupt their physiology. All land plants, from liverwort to rye, use a complex signalling cascade under stressful conditions. An international research team led by the Hebrew University of Jerusalem with the participation of the University of Göttingen investigated how evolutionary changes in receptor proteins led to their ability to sense the plant hormone abscisic acid (ABA). This enabled them to develop sensing mechanisms that aided their colonization of dry land and their response to stress conditions. The results were published in the journal Proceedings of the National Academy of Sciences (PNAS).

The signalling cascade of stress in “land plants”, ie all plants that grow on land from moss to trees but not algae, is based on the detection of the messenger substance abscisic acid, which is a plant hormone. According to scientific understanding, this hormone’s action has long been regarded as a key characteristic of land plants. Scientists suspected that this hormone, which regulates stress responses, helped plants early on in their evolution to cope with the stress they were exposed to during the “conquest” of the land.

Co-author Professor Jan de Vries from the Institute of Microbiology and Genetics at the University of Göttingen says: “We were able to show that the closest living algae relatives of land plants, the zygnematophyceaen green algae (to some unflatteringly known as ‘pond scum’), have a complete set of genes that strongly resembles the genetic framework that land plants use for the detection of abscisic acid. In particular, we found that the first step in the signalling cascade was present: a possible receptor for the hormone.”

In the current study, an international team consisting of researchers from four different countries and led by the Hebrew University of Jerusalem, investigated whether and how this receptor gene integrates into the signalling cascade. “Using molecular biological methods, we found out that it integrates into the signalling cascade and is able to regulate it,” says de Vries. “However, it does this independently of the hormone abscisic acid.”

In land plants, the signalling cascade hinges on the action of the stress hormone. However, algae do not use the hormone as a trigger for the signalling cascade — so the cascade has an origin independent from this function as hormone-dependent signalling framework. Interestingly, this original mechanism still functions in land plants – in addition to the well-known hormone-dependent mechanism that every biology student learns.

###

Original publication: Yufei Sun et al. A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences (2019). Doi: 10.1073/pnas.1914480116

Publication: https://www.pnas.org/content/early/2019/11/18/1914480116

Contact:

Professor Jan de Vries

University of Göttingen

Faculty of Biology and Psychology

Institute of Microbiology and Genetics

Department of Applied Bioinformatics

Goldschmidtstraße 1, 37077 Göttingen

Tel: 0551 39-13995

Email: [email protected]

http://www.uni-goettingen.de/en/613776.html

Media Contact
Melissa Sollich
[email protected]
49-055-139-26228

Original Source

https://www.uni-goettingen.de/en/3240.html?id=5712

Related Journal Article

http://dx.doi.org/10.1073/pnas.1914480116

Tags: BiochemistryBiologyCell BiologyEcology/EnvironmentEvolutionGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Unlocking FLS2’s Secrets for Broader Pathogen Detection

Unlocking FLS2’s Secrets for Broader Pathogen Detection

November 6, 2025
Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

November 6, 2025

Speeding Up Transgenic Plant Growth: Harnessing Natural Regeneration to Cut Weeks Down to Days

November 6, 2025

Selective Lipid Deposition in Triploid Rainbow Trout

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover Adaptive Music Technologies Boost Exercise Engagement and Enjoyment

UBC Study Reveals Strong Access to Abortion Pill in B.C., Highlights Persistent Gaps

ERC Synergy Grant Enhances Insights into the Blood-Nerve Interface to Revolutionize Pain Management

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.