• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New analytical screening tools for the detection of cardiovascular disease

Bioengineer by Bioengineer
November 19, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Presented in a study by Mariana Nogueira and Mathieu De Craene, within the framework of the CardioFunxion project, led by Bart Bijnens (ICREA) and Gemma Piella, members of the Physense and SiMBioSys research groups at BCN MedTech

IMAGE

Credit: © 2019 Elsevier. https://doi.org/10.1016/j.media.2019.101594


Echocardiography is a test that uses ultrasound techniques to produce images of the heart in real time. Stress echocardiography uses this technique to evaluate the heart rate response while performing an activity in which the heart has to work (stress). Stress echocardiography can reveal traces of cardiovascular disease in its early stages, before it manifests, and so this technique becomes a valuable screening tool.

A protocol of stress echocardiography that has proved to have advantages in the clinical practice is obtained while performing handgrip exercises. However, the maximal exercise levels are not easily quantified and regulated, requiring the analysis of the complete data sequences (thousands of images), which poses a challenge for the clinician.

An analytical framework is proposed that explicitly addresses the practical challenges posed by analysing thousands of complete data and illustrates the potential of their study on a specific group of heart patients

A study published in the journal Medical Image Analysis, proposes an operational framework for the analysis of this complex dataset. The article has just been published, on 6 November, in the advanced online edition. In this study, the physiological data of heart function are obtained by echocardiography while subjects performed a series of handgrip exercises. The data were integrated by Multiple Kernel Learning (MKL).

The study was coordinated by Bart Bijnens (ICREA-UPF) and Gemma Piella, researchers of the Physense and SiMBioSys research groups, respectively, which belong to the BCN MedTech research unit at the Department of Information and Communication Technologies (DTIC) at UPF who work in the field of Machine Learning for clinical decision-making. Mariana Nogueira and Mathieu De Craene are the first authors of the article and researchers at Medisys Philips Research in Paris (France) within the framework of the CardioFunXion project. Sergio Sánchez Martínez is co-author and a member of SiMBioSys; Devyani Chowdhury, co-author of the study and a researcher at the University of Pennsylvania (USA).

An analytical framework based on machine learning

The authors propose an analytical framework that explicitly addresses the practical challenges posed by analysing thousands of complete data and illustrates the potential of their study on a specific group of heart patients. The article presents the results of image acquisitions obtained from 15 patients, 10 healthy and 5 with the ANT1 (Adenine Nucleotide Translocator-1) mutation, which affects cardiac cycles. For the study, the researchers analysed a total of 1,377 cardiac cycles.

“Our framework uses Multiple Kernel Learning (MKL) to project heterogeneous data retrieved during each cardiac cycle during the stress test in a low-dimensional space where the main data variations are encoded. Here, the stress response of each subject can be seen as a trajectory, and from the similarity between trajectories, the subjects can be allocated to groups that reflect different response patterns”, Bijnens and Piella explain.

MKL provides a simplified representation that is explored to discriminate groups of response and understand the underlying pathophysiological mechanisms

Then, the authors explain, the physiological interpretation of the results is decoded allowing reconstructing the input signals along any trajectory through the low-dimension output space. This simplified representation is explored to discriminate groups of response and understand the underlying pathophysiological mechanisms.

The authors have proposed a framework for analysing nonstandardized stress echocardiography sequences. Using unsupervised MKL, they combined the information on the myocardial velocity and heart rate to obtain a lower-dimensional representation of the data. The proposed framework is illustrated in the sequences of handgrip exercises acquired in a control group of healthy subjects and patients with the ANT1 mutation.

The results show that the methodology proposed by these experts in machine learning is able to discriminate between different responses and provide information about the underlying pathophysiological mechanisms, demonstrating its ability to analyse such complex datasets showing the potential of nonstandardized protocols, such as handgrip exercises to unmask differential cardiac response mechanisms. Indeed, the results confirm that the proposed framework is able, for each study subject, to distinguish healthy or pathological responses and record pathology-specific patterns.

###

Media Contact
UPF
[email protected]

Original Source

https://www.upf.edu/web/e-noticies/home/-/asset_publisher/wEpPxsVRD6Vt/content/id/230379550/maximized#.XdPdbldKiUk

Related Journal Article

http://dx.doi.org/10.1016/j.media.2019.101594

Tags: BiologyCardiologyCell BiologyMedicine/HealthStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

H19 Mitigates Oxidative Stress in Diabetic Cardiomyopathy

H19 Mitigates Oxidative Stress in Diabetic Cardiomyopathy

October 2, 2025
Accurate Genome Size Estimation with HiFi Reads

Accurate Genome Size Estimation with HiFi Reads

October 2, 2025

Enhancing Drought-Tolerant PGPR for Rice Yield

October 2, 2025

Key Genes for Fish Adaptation: Spotlight on Mechanisms

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating Urban Flood Models with Multisource Data

Comparing Methods to Measure Aggregate PFAS Exposure

Spin Squeezing Achieved in Diamond NV Centers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.