• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Brookhaven-Commonwealth Fusion Energy Project wins DOE funding

Bioengineer by Bioengineer
November 12, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Through DOE’s new Innovation Network for Fusion Energy (INFUSE) program, Brookhaven will partner with Massachusetts-based startup Commonwealth Fusion Systems to develop superconducting power cables and test their ability to withstand damage-inducing event

IMAGE

Credit: Brookhaven National Laboratory


UPTON, NY–A project between the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and the Massachusetts Institute of Technology (MIT) spinoff Commonwealth Fusion Systems (CFS) has been selected as one of the first 12 to be funded by the DOE’s Innovation Network for Fusion Energy (INFUSE) program. Sponsored by the Office of Fusion Energy Sciences (FES) within DOE’s Office of Science, INFUSE is focused on accelerating fusion energy development through private-public research partnerships. The program provides companies with access to the world-leading facilities and expertise of scientists at DOE’s national laboratories.

“We believe the private sector has important contributions to make in the quest for fusion energy,” said James Van Dam, DOE Associate Director of Science for Fusion Energy Sciences. “This program is an excellent way to leverage the assets of both the private and public sectors in the effort to advance fusion energy science and technology.”

The funded Brookhaven-CFS project is titled “Superconducting Cable Quench Detection.” Ramesh Gupta, head of the Magnet Science Group in Brookhaven Lab’s Superconducting Magnet Division (SMD), is the principal investigator (PI) on the project; Brandon Sorbom, chief scientific officer and co-founder of CFS, is co-PI.

“Brookhaven is incredibly excited to be working with CFS to develop breakthrough technologies for the fusion power industry,” said SMD Head Kathleen Amm. “Compact fusion using high-temperature superconductors (HTS) has the potential to revolutionize power generation. Not only would fusion reactors provide limitless energy, but also the development of commercially viable HTS in this industry would enable lossless power transmission and high power density, and reduced emissions for transportation. The collaboration between Brookhaven and CFS under the INFUSE program to characterize the HTS cables is a critical step in developing the technology needed to enable compact fusion.”

Protecting HTS power cables from quenching is a pressing technical challenge in developing fusion energy systems. Quenching is a phenomenon that occurs when a superconductor suddenly stops being able to conduct electricity without any resistance, or energy loss. This unexpected transition from the superconducting to normal resistive state results in the conversion of energy into excessive heat, which can degrade or permanently damage the materials. Quench detection and remediation technologies are crucial for protecting the cables.

At CFS, researchers are using new HTS cables capable of creating high-strength magnetic fields at cryogenic temperatures to realize a tokamak-based power reactor called SPARC. Tokamaks produce thermonuclear fusion power by using a powerful magnetic field to confine a hot plasma (very hot gas containing a collection of ions and electrons) within the reactor. They harness fusion energy using the same process that powers the sun and stars. Fusion occurs in a plasma when two atoms (nuclei) join together to form a new atom, generating an enormous amount of energy. If successful, SPARC–built in collaboration with the MIT Plasma Science and Fusion Center–would be the first controlled device to achieve a net energy gain from fusion and would validate the potential of high-field devices built with new superconducting technology.

For the project, CFS will use facilities in Brookhaven’s SMD to perform quench tests on their cables. The Brookhaven-CFS team will collaborate on cable design and construction, cable instrumentation, design and construction of a cable test fixture, quench testing at 4 Kelvin (?452 degrees Fahrenheit) temperature, and quench data analysis. They will install the cables inside a dipole magnet made of the elements niobium and tin (Nb3Sn) and capable of reaching a magnetic field strength of 10 Tesla, approaching the field where SPARC will operate. The team will evaluate the speed and sensitivity of quench detection and protection systems, and determine if quenching causes any degradation in the cables.

“Brookhaven has a long history with HTS cable and coil research and development,” said Gupta. “The SMD’s unique large-opening magnet is ideally suited to perform studies in high background fields.”

“We are excited for this important program through DOE-FES that will allow us to leverage important expertise at national labs such as Brookhaven,” said Sorbom. “We look forward to working with the team at Brookhaven to advance a new generation approach to quench detection that will support our work to get clean, limitless fusion energy on the grid.”

###

The INFUSE program solicited proposals from the U.S. fusion industry, and selected projects received awards between $50,000 and $200,000 each, with a 20 percent cost share by industry partners. The awards are subject to a successful negotiation of a Cooperative Research and Development Agreement (CRADA) between the companies and the partnering laboratories. Funding is not provided directly to the private companies but instead provides support to the partnering DOE laboratories to enable them to collaborate with their industrial partners. For the first INFUSE awards, 12 projects representative of six private companies partnering with six national laboratories were selected. A full list of projects with abstracts are available on the INFUSE website.

Media Contact
Ariana Manglaviti
[email protected]
631-344-2347

Original Source

https://www.bnl.gov/newsroom/news.php?a=116853

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsResearch/DevelopmentSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1149 shares
    Share 459 Tweet 287
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Molecular Bodyguard” Enables Infections to Persist

Modular eFAST Phantom Advances AI Ultrasound Triage

Key Insights on Retinoblastoma and CSF Metastasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.