• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sugar-coating proteins can help understand brain disease

Bioengineer by Bioengineer
November 7, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Dundee discovery has the potential to help scientists better understand neurological diseases such as Alzheimer’s and Parkinson’s

IMAGE

Credit: University of Dundee

A University of Dundee discovery has the potential to help scientists better understand neurological diseases such as Alzheimer’s and Parkinson’s.

Researchers, led by Professor Daan van Aalten in the University’s School of Life Sciences, have developed a new way to tag proteins in human cells with a small sugar molecule called O-GlcNAc. There are over 20,000 proteins in every human cell and approximately 20% of these contain O-GlcNAc.

The exact role played by O-GlcNAc remains a mystery but the molecule is found on proteins related to Alzheimer’s, Parkinson’s, motor neurone disease and intellectual disability.

This has led scientists to hypothesise that O-GlcNAc disruption is linked to these diseases, and increasing the levels of O-GlcNAc appears to be of therapeutic benefit. The Dundee team have developed a technique that enables them to permanently fix the sugar onto proteins where it naturally occurs at only low levels, allowing them to explore exactly what it does.

The researchers believe their method, combined with rapidly developing gene editing technology, could help understand the causes of diseases in which this sugar modification is disrupted.

“It is likely that perturbation of the O-GlcNAc sugar on just a single protein could have deleterious effects on healthy neurons and other cells but until recently, the research field lacked methods to investigate this,” explained Professor van Aalten. “We have now created the tool that enables us to do this.

“This allows us to ask questions about the role of specific sugar modifications that are dysregulated in cases of intellectual disability, as well as other brain diseases. Our technique has great potential to advance knowledge of O-GlcNAc-related disorders and help develop novel therapeutics.”

Dr Andrii Gorelik, the lead author of the research, discovered that the carbohydrate-protein linkage can be genetically recoded (altered) to permanently fix the sugar and enable it to be studied. This technology allows the O-GlcNAc found on a single protein within human cells and model organisms to be investigated and can now be applied to models of various neurological diseases.

Dr Gorelik said, “I had been working on this problem for several years when a few unexpected observations led me to establish this new method.

“Because the approach is so simple, it can be used in virtually any biomedical research lab worldwide, and, hopefully, result in exciting findings regarding the role of O-GlcNAc in normal physiology and disease.”

###

The research was supported by Wellcome Trust funding for Professor van Aalten and Dr Gorelik. The findings were published today in the journal Nature Structural and Molecular Biology.

Media Contact
Grant Hill
[email protected]
01-382-384-768

Related Journal Article

http://dx.doi.org/10.1038/s41594-019-0325-8

Tags: AlzheimerBiochemistryBiologyCell BiologyMicrobiologyMolecular Biologyneurobiology
Share14Tweet9Share2ShareShareShare2

Related Posts

Traffic noise and land clearance threaten bird survival, study reveals

Traffic noise and land clearance threaten bird survival, study reveals

October 23, 2025
blank

Endangered Kangaroo Island Ground-Dweller Spotted in Trees: A Surprising Discovery

October 23, 2025

Boosting Auxin Production in Streptomyces for Plant Growth

October 23, 2025

Unlocking Walnut’s Genome: Insights into Chilling Tolerance

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    152 shares
    Share 61 Tweet 38
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel CAR-T Cells Target Prostate Cancer with Reduced Toxicity

Constructive Interference Edge Reveals Quantum Ergodicity

Integrating Value in Uncertain Decisions: Florida-Georgia Gambling Task

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.