• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Membrane intercalation enhances photodynamic bacteria inactivation

Bioengineer by Bioengineer
November 6, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tian Ye


Bacterial infections pose a threat to human health. Now, with increasing antibiotic resistance, such infections may again ravage humanity as they did in the pre-antibiotic era. Scientists are thus seeking new, non-antibiotic means to combat bacterial infection.

One promising strategy is photodynamic inactivation (PDI). It uses photosensitizers to generate reactive oxygen species (ROS) that damage bioactive substances in the cell membrane, thus causing irreversible bacterial death in the presence of light and O2. Unfortunately, ROS has a short half-life and reaction radius. As a result, a big challenge for PDI is how to enhance membrane intercalation.

Recently, researchers from the Technical Institute of Physics and Chemistry (TIPC) of the Chinese Academy of Sciences, Shanghai Jiao Tong University and the University of Utah reported their work on achieving enhanced membrane intercalation.

In this work, the scientists arranged for a peptide-decorated cell-penetrating virus coat protein (TAT-TMVCP) and an organoplatinum metallacycle (TPE-Pt-MC), which acts as a photosynthesizer with aggregation-induced emission, to self-assemble through electrostatic interaction.

In the “new” assembly, the photosensitizer provides ROS-generation capacity. The peptide exposed on the surface provides membrane-intercalating capacity.

The researchers discovered that the assembly achieved significantly enhanced PDI efficiency against E. coli and S. aureus, especially against gram-negative E. coli. The assembly decreased E. coli’s survival rate from 55% in the dark to nearly 0% upon light irradiation.

This study has wide implications, ranging from improving PDI efficiency to generating multifunctional nanomaterials.

###

The results, entitled “Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein”, were published in PNAS on November 4th 2019.

This research was supported by the National Key R&D Program of China, the National Natural Science Foundation of China, the National Institutes of Health of the U.S., and the Beijing Municipal Natural Science Foundation, among others.

Media Contact
Tian Ye
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/chem/201911/t20191104_222513.shtml

Related Journal Article

http://dx.doi.org/10.1073/pnas.1911869116

Tags: BiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Rapid Color-Changing Sensor Detects Toxic Gases Instantly

Rapid Color-Changing Sensor Detects Toxic Gases Instantly

August 7, 2025
blank

Designing Shape-Selective Macrocycles for Humid CO2 Capture

August 7, 2025

Invisible Material Poised to Transform Smart Technology

August 7, 2025

Room-Temperature Quantum Freezing Achieved

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    48 shares
    Share 19 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Traits of Enterocytozoon bieneusi in Hebei Cattle

LiNiO2 Nanosheets: A New Cathode for Lithium-Ion Batteries

How Behavior Patterns Predict Teen Substance Use

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.