• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

XenonPy.MDL — Comprehensive library of pre-trained models for materials properties

Bioengineer by Bioengineer
November 5, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Transfer learning may serve as a solution to the scarcity of materials property data

IMAGE

Credit: Ryo Yoshida

A joint research group consisting of the Institute of Statistical Mathematics (ISM) and the National Institute for Materials Science (NIMS) has developed approximately 140,000 machine learning models capable of predicting 45 different types of physical properties in small molecules, polymers and inorganic materials. The joint group then made XenonPy.MDL – a pre-trained model library – publicly available.

XenonPy – an open source platform for materials informatics (MI) research – was jointly developed by NIMS and a team at the ISM Data Science Center for Creative Design and Manufacturing (Chang Liu (Project Assistant Professor), Yoh Noguchi (Project Researcher), Stephen Wu (Assistant Professor), Hironao Yamada (Project Researcher) and Ryo Yoshida (Center Director)).

XenonPy uses machine learning algorithms to perform various tasks of MI. Users of XenonPy can run the pre-trained models available in the XenonPy.MDL library via the application programming interface (API) and use them to construct a variety of materials design workflows. The joint group recently reported the release of XenonPy.MDL in a research article published in ACS Central Science, a journal of the American Chemical Society.

In addition, as described in the article, the group succeeded in demonstrating the great potential of transfer learning to overcome the problem of limited amounts of materials data in various tasks of MI (i.e., predicting the physical properties of small molecules, polymers and inorganic crystalline materials using exceedingly limited materials data).

###

This research project was supported in part by the JST “Materials Research by Information Integration” Initiative (MI2I) and was conducted at NIMS between FY2015 and FY2019.

Media Contact
URA Station Planning Unit
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acscentsci.9b00804

Tags: Algorithms/ModelsCalculations/Problem-SolvingMaterialsMathematics/Statistics
Share13Tweet8Share2ShareShareShare2

Related Posts

Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    96 shares
    Share 38 Tweet 24

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Geophysical Health Assessment for Coastal Sustainability in Ras Gamila

Gender Disparities in Cancer and Behavioral Factors

Exploring Cryptosporidium parvum Diversity with BlooMine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.