• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists invent animal-free testing of lethal neurotoxins

Bioengineer by Bioengineer
October 29, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Scientistchic


Animal testing will no longer be required to assess a group of deadly neurotoxins, thanks to University of Queensland-led research.

Associate Professor Bryan Fry, of UQ’s Venom Evolution Lab, said a new technique could replace conventional methods of testing paralytic neurotoxins, which previously required euthanasia of test subjects.

“The old method, while extremely efficient, is limited in that it’s slow and requires the euthanisation of animals in order to obtain the necessary tissue,” Dr Fry said.

“Our new method uses optical probes dipped into a solution containing the venoms and we measure the binding to these probes – the critical factor – by analysing changes in the light reflected back.

“It’s going to reduce the numbers of animals used for research testing, but it also has significant biomedical implications.”

Testing and trialling paralytic neurotoxins is not only critical for research into anti-venoms, but also for the treatment of a wide array of diseases and conditions.

“The team can now – without the use of animal subjects – screen venoms for non-target activities that may be relevant for drug design and development, helping treat all types of ailments,” Dr Fry said.

“For example, we’ve showed that temple pit viper venom has an unusual cross-reactivity for the human alpha-5 receptor, which is a major target for conditions including colitis and smoking.

“Who knows what other potential treatments the world’s venoms could lead to – we’re excited to find out.”

The technology relies on the development of synthetic peptides that correspond to nerve receptors, which tell our muscles to contract.

“Neurotoxins, found in the venom of many types of snakes, cause paralysis by attaching to nerve receptors in our muscles, preventing the normal chemical binding process that naturally occurs in our bodies when we want to move,” Dr Fry said.

“This is what stops a mouse fleeing from a snake after it has been bitten.

“Since venoms bind to the synthetic peptides more vigorously than they do to human nerves, we’re also investigating a new treatment of snakebite, using these peptides as ‘decoys’.

“The venom would bind to them instead of their original nervous system target in the human body.

“Many species of deadly snake lack an effective anti-venom, so these sorts of applications may help meet this critical need.

“This underscores the flexibility of this novel technique and why we’re so excited about this breakthrough.”

###

The research has been published in Toxins (DOI: 10.3390/toxins11100600).

Media Contact
Bryan Fry
[email protected]
61-400-193-182

Original Source

https://www.uq.edu.au/news/article/2019/10/scientists-invent-animal-free-testing-of-lethal-neurotoxins

Related Journal Article

http://dx.doi.org/10.3390/toxins11100600

Tags: BiochemistryBiologyMedicine/HealthToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing RNA Polymerase II Start Sites via csRNA-seq

Gender Variations in Biomarkers and Memory Decline in Alzheimer’s

Innovative Device Combines Sunlight and Kangaroo Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.