• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Computer models show clear advantages in new types of wind turbines

Bioengineer by Bioengineer
October 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have modelled the fluid dynamics of multi-rotor wind turbines, and how they interact in wind farms; the research demonstrates a clear advantage for a turbine model with four rotors

IMAGE

Credit: Lars Kruse, AU Photo


Researchers have modelled the fluid dynamics of multi-rotor wind turbines, and how they interact in wind farms. The research demonstrates a clear advantage for a turbine model with four rotors.

With their 220-metre diameter, the wind turbines at the future Dogger Bank wind farm in the North Sea are the world’s largest yet. But large, larger, largest is not necessarily the best when it comes to wind turbines.

Researchers from Aarhus University and Durham University in the UK have now modelled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations, and it turns out that wind turbines with four rotors on one foundation have a number of advantages.

A wind turbine harvests energy from the incoming wind, but when the wind passes through the blades of the turbine, a region with lower wind speeds and higher turbulence is created called wind turbine wake. A second wind turbine downstream is affected by this turbulence in several ways. First of all, it produces less energy, and secondly, the structural load is increased.

“In the study, we found that turbulence and currents in the wake of the turbines recover much faster with multi-rotor turbines. This means that, with multi-rotors, a second turbine downstream will produce more energy and will be subjected to less load and stress, because the turbulence is correspondingly smaller,” says Mahdi Abkar, assistant professor at the Department of Engineering, Aarhus University and an expert in flow physics and turbulence.

Less cost, less hassle, more energy

A wind turbine with more than one rotor creates less turbulence, and the wind is “restored” faster, which means a higher energy output. And this is important knowledge at a time when wind turbines are becoming increasingly larger, and thereby also increasingly expensive.

“You can always increase your energy output by increasing the diameter of the rotor blades, but there are major structural challenges in building these massive constructions with diameters exceeding 150 metres. The material requirements increase, the transport of the structures is cumbersome and expensive, and it becomes more costly to maintain the wind turbines,” says Mahdi Abkar.

A turbine with four rotors costs approx. 15% less to construct than a turbine with one rotor, even though the blades cover the same area in total. At the same time, a construction with four rotors is much lighter and therefore easier to transport. And if one of the rotors stops working, the rest of the turbine will still produce energy, unlike ordinary wind turbines.

In addition, the researchers have found that individual multi-rotor turbines actually produce slightly more energy than single-rotor turbines: approx. 2% more.

“We’ve explored several different geometries and dynamics of multi-rotor turbines and have found that the optimum construction is a turbine with four rotors as far apart as possible. The latter results in less downstream turbulence and a faster stabilisation of the wake behind the wind turbines,” says Assistant Professor Mahdi Abkar.

###

Media Contact
Mahdi Abkar
[email protected]
459-352-1694

Related Journal Article

http://dx.doi.org/10.1063/1.5097285

Tags: Algorithms/ModelsCivil EngineeringClimate ChangeIndustrial Engineering/ChemistryMechanical EngineeringResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    70 shares
    Share 28 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gradient Graphene Powers Precise Directional Laser Printing

Machine Learning Unveils Unified Cell-State Landscape

Optimizing Rapid Genomic Sequencing in Level IV NICU

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.