• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Designing a new class of drugs to treat chronic pain

Bioengineer by Bioengineer
October 1, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Davis researchers receive $1.5 million grant from NIH’s HEAL Initiative

IMAGE

Credit: UC Davis Health

A UC Davis research team, led by Vladimir Yarov-Yarovoy and Heike Wulff, will receive a $1.5 million grant from the National Institutes of Health (NIH) to develop a novel class of peptides that are better a treating pain and don’t have the side effects of opioids. The grant is part of the NIH initiative Helping to End Addiction Long-Term (HEAL Initiative).

“With the national opioid crisis, we more than ever need a safer, more effective and non-addictive class of medications to treat chronic pain,” said Vladimir Yarov-Yarovoy, associate professor of physiology and membrane biology at UC Davis School of Medicine and principal investigator of the study.

“Dr. Yarov-Yarovoy is leading the next wave of innovative and novel therapeutics for pain,” said David Copenhaver, associate professor and Chief of the Pain Medicine Division at UC Davis. “We are excited to collaborate on this journey of discovery to find novel, safe and effective agents to treat pain.”

Scott Fishman, professor and director of UC Davis Center for Advancing Pain Relief, agrees.

“Receiving this grant reflects the great potential for this work to help millions of people in pain,” Fishman said. “We look forward to bringing this exciting science to the front lines of patient care.”

Targeting specific sodium channels

Previous research has identified voltage-gated sodium ion channels, especially NaV1.7, NaV1.8 and NaV1.9, as critical elements in pain signaling and transmission. Certain peptides, such as the tarantula-based toxin ProTx-II, are known to block specific sodium channels, preventing nerve cells from transmitting signals that trigger pain.

“We want to relieve pain without the side effect of addiction that occurs with opioids,” said Karen Wagner, a co-investigator who studies pain in animal models. “By targeting the relevant sodium channels instead of the receptors usually targeted by opioids, we provide an alternative to the addictive and detrimental effects of opioid pain medications.”

Blocking sodium channels to control pain

To ultimately relieve chronic pain, the researchers want to identify the most effective peptide design that can block the relevant sodium channels without affecting the activity of other channels.

In January 2019, several high-resolution structures of human sodium channel were published, giving the researchers a better understanding of the interactions between peptides and the sodium channels. Using the computational power of Rosetta software, the UC Davis researchers will design and synthesize different versions of the ProTx-II-based peptide to identify those that best selectively and effectively block pain-associated channels.

“Starting from the naturally-occurring ProTx-II peptide, we can improve the design of these toxins by optimizing for potency and selectivity,” said Wulff, a professor of pharmacology and director of the Probe and Pharmaceutical Optimization core of the UC Davis CounterACT Center of Excellence. “We will trim ProTx-II down to its essential binding parts to enhance its targeting of specific pain-related channels.”

Designed peptides that are found to selectively block voltage-gated sodium ion channels will be sent to Jon Sack’s laboratory for testing on neurons. Based on this testing, the researchers will choose the peptides that would be used in animal models.

The NIH launched the HEAL Initiative in April 2018 to improve prevention and treatment strategies for opioid misuse and addiction and enhance pain management.

“It’s clear that a multipronged scientific approach is needed to reduce the risks of opioids, accelerate development of effective non-opioid therapies for pain and provide more flexible and effective options for treating addiction to opioids,” said NIH Director Francis Collins.

The Team

Yarov-Yarovoy is an expert in computational modeling of peptide toxin – ion channel interactions and peptide design targeting ion channels.

Heike Wulff specializes in preclinical therapeutics development targeting ion channels and has developed an ion channel-targeted peptide toxin variant currently in clinical trials.

Bruce Hammock, a distinguished professor of entomology and director of the NIEHS-UCD Superfund Research Program, conducts research to develop preclinical therapeutics to control acute and neuropathic pain.

Karen Wagner, a research scientist in the Department of Entomology, researches neurobiology of inflammation, pain and chronic neurodegenerative diseases.

Jon Sack, an associate professor of physiology and membrane biology, specializes in mechanisms of voltage-gated ion channel modulation by toxins, and the design of novel probes to monitor ion channel activity.

Daniel Tancredi is a biostatistician and associate professor of pediatrics at UC Davis School of Medicine.

Project title: Optimization of non-addictive biologics to target sodium channels involved in pain signaling.

Media Contact
Nadine Yehya
[email protected]

Original Source

https://health.ucdavis.edu/publish/news/contenthub/14209

Tags: AddictionBiologyChemistry/Physics/Materials SciencesMedicine/HealthPainPharmaceutical SciencePhysiologyPublic HealthResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.