• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New Mersey designs show tidal barriers bring more benefits than producing clean energy

Bioengineer by Bioengineer
September 24, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An ambitious new Mersey barrage concept shows how tidal energy projects can offer many benefits to society in addition to clean renewable energy

IMAGE

Credit: Professor George Aggidis

An ambitious new Mersey barrage concept shows how tidal energy projects can offer many benefits to society in addition to clean renewable energy.

When designed holistically, tidal barrage schemes can provide additional transport links for commuters, become tourism destinations, mitigate wildlife habitat loss, as well as provide opportunities to boost people’s health and wellbeing with additional options for cycling and walking, say researchers from Lancaster University and the University of Liverpool.

The academics have proposed an ambitious new design for a mooted tidal energy barrage on the Mersey Estuary, which has one of the largest tidal ranges in the UK. Their concept, which is based on the shape of a whale and includes buildings and platforms for recreation in the centre of the river, illustrates the additional benefits tidal schemes can bring.

The researchers developed their Mersey estuary design to illustrate how developers can apply a novel decision-making framework for tidal schemes called the ‘North West Hydro Resource Model’.

This model, which was developed by academics at Lancaster University’s Engineering Department, includes a range of factors that should be considered for tidal scheme designs, including: energy generation; land use; habitat; flood risk; transport; fisheries; cultural heritage; water supply; tourism and job creation.

George Aggidis, Professor of Energy Engineering at Lancaster University, lead researcher on the paper and creator of the North West Hydro Resource Model, said: “We need to view tidal energy projects holistically and recognise that they provide opportunities beyond energy generation, including environmental, societal and economic opportunities.

“The UK is uniquely positioned to benefit from tidal power, but so far no schemes have managed to get off the drawing board. By considering the needs of people, and the need to create compensatory habitats for wildlife, organic architectural designs like ours show how developers can enhance, rather than detract, from estuaries like the Mersey.

“Tidal barrages and lagoons can offer significant advantages over other sources of renewable power – we need to keep these additional opportunities in mind when comparing the costs and benefits of different forms of energy generation,” added Professor Aggidis.

The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure – a ‘hydropower landmark’ boosting tourism to the region.

Their vision includes new transport and leisure links from Port Sunlight on the Wirral to the Festival Gardens on the Liverpool side of the estuary with new recreational walking and cycle paths and a monorail for commuters.

The concept includes a world-leading centre for hydropower research, which they argue would further enhance the region’s excellence in science and innovation and support education into the technology.

However, one of the main obstacles to tidal projects, in addition to relatively high initial capital costs, is the perceived impact on the habitat of existing wildlife within estuaries.

The researchers believe any Mersey tidal project would need to offer alternative habitat to compensate for losses to existing mud flats – which are a major feeding ground for migratory birds.

However, they argue that concerns about impact to existing wildlife needs to be balanced against future environmental challenges.

Professor Aggidis said: “As with hydropower dams, tidal barrages could have a major impact on local environments, with concerns over biodiversity. Steps would need to be taken to balance the negative environmental impact against the potential to protect against flooding from future sea-level rises caused by global warming.

“We recognise that the total area of intertidal mud-flats that would be lost cannot be replaced. To compensate for the negative ecological effects of the barrage, wildlife will be integrated into the core of the design, which provide habitats to encourage increases in the variety of biodiversity on the Mersey estuary.”

###

The researchers have outlined their WHALE design in the paper ‘Opportunities for tidal range projects beyond energy generation: using Mersey barrage as a case study’, which has been published in the journal Frontiers of Architectural Research.

Media Contact
Ian Boydon
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.foar.2019.08.002

Tags: Civil EngineeringEnergy SourcesHydrology/Water ResourcesIndustrial Engineering/ChemistryMarine/Freshwater BiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Discovering Exotic Roto-Crystals: A New Frontier in Material Science

October 21, 2025
blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    131 shares
    Share 52 Tweet 33
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

18F-FAPI PET/CT Reveals Lung Cancer Brain Metastasis Rates

How Maternal Obesity Affects Sex-Specific Liver Development

Hanyang University Researchers Innovate Facet-Guided Metal Plating for Enhanced Stability in Anode-Free Metal Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.