• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Anthropologist contributes to major study of large animal extinction

Bioengineer by Bioengineer
September 20, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research published in Science explains the effect of human-influenced mass extinction of giant carnivores and herbivores from North America.

IMAGE

Credit: University of Arkansas / University Relations

As part of an international research group based at the Smithsonian Museum of Natural History, anthropology assistant professor Amelia Villaseñor contributed to a large, multi-institutional study explaining how the human-influenced mass extinction of giant carnivores and herbivores of North America fundamentally changed the biodiversity and landscape of the continent.

In their study published today in Science, researchers from Australia, the United States, Canada and Finland showed that humans shaped the processes underlying how species co-existed for the last several thousand years. Smaller, surviving animals such as deer changed their ecological interactions, the researchers found, causing ecological upheaval across the continent.

The researchers’ work has implications for conservation of today’s remaining large animals, now threatened by another human-led mass extinction.

The study’s primary author is Anikó Tóth at Macquarie University in Sydney, Australia. Tóth collaborated with Villaseñor and several other researchers at the Smithsonian’s Evolution of Terrestrial Ecosystems Program, as well as researchers at other institutions.

Tóth and the co-authors focused on how large mammals were distributed across the continent in the Pleistocene and Holocene geological epochs. (The Pleistocene Epoch occurred from about 2.5 million to 11,700 years ago. Starting at the end of the Pleistocene, the Holocene is the current geological epoch.) To do this, the researchers analyzed how often pairs of species were found living in the same community or in different communities.

To rule out community changes that were the result of reduced diversity or lost associations involving extinct species, the researchers analyzed only those pairs in which both species survived. Prior to the extinction, co-occurrence was more common. After extinction, segregations were more common.

Villaseñor’s research focuses on human fossil remains as a way to understand how human ancestors interacted with mammal communities for the last 3.5 million years. Her more recent research explores how modern humans have shaped today’s ecosystems.

“Rather than thinking of humans as separate from ‘natural’ environments, our research has illuminated the major impacts that humans have had on the ecosystem for many thousands of years,” Villaseñor said. “The results of this paper and others from our group illuminate the outsized impacts that human-mediated extinction has had in North America.”

By the end of the Late Pleistocene in North America, roughly 11,000 years ago, humans contributed to the extinction of large mammals, including mammoths and sabre-toothed cats. Recent work, driven by today’s crisis in biodiversity, has looked at understanding the ecological and evolutionary legacies of this event. There was ecological transformation across the continent – the mammoth steppe disappeared, vegetation and fire regimes changed and large carnivores were lost.

###

Media Contact
Amelia Villaseñor
[email protected]

Original Source

https://researchfrontiers.uark.edu/anthropologist-contributes-to-major-study-of-large-animal-exctinction/

Related Journal Article

http://dx.doi.org/10.1126/science.aaw1605

Tags: BiologyClimate ChangeEcology/EnvironmentEvolutionNew WorldPaleontology
Share16Tweet10Share3ShareShareShare2

Related Posts

Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025
Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Impact of Reaction Time on α-MnO₂ in Zinc-Ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.