• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Engineered bacterial biofilms immobilizing nanoparticles enable diverse catalytic applications

Bioengineer by Bioengineer
September 20, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Nano-scale objects (1 – 100 nm) are desirable nano-catalysts featured with more catalytic active sites due to higher surface-area-to-volume ratios. The nano-scale nature brings several attendant challenges such as leakage of nano-catalysts to ambient environment and difficulties in reusing nanocatalysts over repeated reaction cycles. A major strategy for addressing these challenges has been the immobilization of nano-objects on various substrates via a variety of technological approaches. However, inorganic and bio-derived or bio-inspired substrates obviously lack “biology-only” attributes like self-regeneration, cellular-growth-based scalability, and the ability of cells to biosynthesize complex enzymes, substrates, co-enzymes, or other required reagents or reaction components in situ. Moreover, studies that have immobilized nano-objects directly on cell surfaces have reported damage to cells.

The Zhong group from the Materials and Physical Biology Division, at ShanghaiTech University has made a major conceptual advance in developing a new abiotic/biotic interface towards the integration and immobilization of nanoscale objects with living cells for catalysis. Very briefly, they successfully showed how engineered amyloid monomers expressed, secreted and assembled in the extracellular matrix of living Escherichia coli (E. coli) biofilms can be harnessed to anchor functional nano-scale catalysts to make highly efficient, scalable, tunable, and reusable living catalyst systems. In their proof-of-concept studies, they have demonstrated three simple catalytic systems, including biofilm-anchored gold nanoparticles to degrade the pollutant p-nitrophenol, biofilm-anchored hybrid Cd0.9Zn0.1S quantum dots (QDs) and gold nanoparticles to efficiently degrade organic dyes, and biofilm-anchored CdSeS@ZnS QDs in a dual bacterial strain semi-artificial photosynthesis system for hydrogen production. As revealed in their studies, the extracellular matrix in biofilms indeed provides an ideal milieu for interfacing and anchoring nano-objects for direct catalysis and for their integration with the metabolism of living cells: even after multiple rounds of reactions, nano-catalysts were still robustly anchored to biofilms and the E. coli cells were still alive for easy regeneration. Importantly, such an approach would open up the extremely powerful and unique attributes of living systems.

There is a large diversity of bacterial biofilms with different functionalities in nature, and their study thus lays the conceptual foundation for coupling the uniquely dynamic properties and capacities of these living materials with the highly reactive nanoparticles to innovatively solve challenges in bioremediation, bioconversion, and energy. Their research will spur further research for creating more efficient and industrially important reaction systems by building and integrating more intricate biofilms/inorganic hybrid catalytic systems.

###

See the article:

Xinyu Wang†, Jiahua Pu†, Yi Liu, Fang Ba, Mengkui Cui, Ke Li, Yu Xie, Yan Nie, Qixi Mi, Tao Li, Lingli Liu, Manzhou Zhu, Chao Zhong

Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications

https://doi.org/10.1093/nsr/nwz104

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Chao Zhong
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz104

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.