• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dengue virus becoming resistant to vaccines and therapeutics due to mutations in specific protein

Bioengineer by Bioengineer
September 20, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Xin-Ni Lim, Emerging Infectious Diseases Programme, Duke-NUS Medical School

Dengue virus (DENV) infects about 400 million people annually around the world, with a high prevalence in tropical and sub-tropical regions. The virus causes diseases ranging from mild dengue fever to severe dengue haemorrhagic fever and dengue shock syndrome.

DENV2 exists as smooth spherical surface particles while growing at the mosquito’s physiological temperature (29 degrees Celsius). It then changes to bumpy surfaced particles at human physiological temperature (37 degrees Celsius). This ability to morph helps the virus to evade the immune system of the human host. Hence, understanding the mechanism behind this is important for therapeutics and vaccine development.

“Together with Professor Pei-Yong Shi from UTMB, we found that in laboratory developed DENV2 strains, mutations in the virus’ E protein causes its transformation into bumpy particles. These structural changes can cause vaccines and therapeutics to be ineffective against the virus,” said Ms Xin-Ni Lim, the study’s lead author who is from Duke-NUS’ Emerging Infectious Diseases (EID) Programme.

The team also tested four DENV2 strains obtained from patients. They observed that in contrast to the laboratory adapted viruses, the majority of these clinical strains maintained smooth surface structure at 37 degrees Celsius. However, at 40 degrees Celsius, the temperature of a fever, all virus strains took on a bumpy surface.

“Our study gives a new direction to vaccine development and treatment for dengue disease. For prevention of disease through vaccines that are administered to the patient before dengue infection, we should use those that are effective against the smooth surface virus. When it comes to patients displaying fever symptoms, treatment strategies effective against the bumpy surface particles should be implemented,” said Dr Sheemei Lok, Professor, Duke-NUS’ EID and corresponding author of this study.

“This study is a first step towards gaining more insight into how DENV2 reacts and adapts to the host’s immunological defenses. We were also able to use computational modelling approaches to predict why particles from different DENV2 strains are more or less adept at morphing from the smooth to bumpy structures. By better understanding the interactions between the virus and the host, we will be able to develop better therapies and vaccines to treat or prevent infections, and contribute to public health outcomes,” said Dr Peter Bond, Principal Investigator from A*STAR’s BII.

The study’s findings also show that the lab adapted DENV2 may not be a good model for research, as its structure is different from the clinical strains isolated from patients. The team is planning to study the other DENV serotypes to find out if there are any other possible structural changes.

###

Media Contact
Lekshmy Sreekumar
[email protected]

Original Source

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007996

Related Journal Article

http://dx.doi.org/10.1371/journal.ppat.1007996

Tags: Health CareInfectious/Emerging DiseasesMedicine/HealthVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Novel Mechanism Behind Cellular Tolerance to Anticancer Drugs

August 9, 2025
Onchocerca ochengi Infection Impacts Gerbil Behavior, Physiology

Onchocerca ochengi Infection Impacts Gerbil Behavior, Physiology

August 9, 2025

Decoding Finch Louse Fly Morphotypes: Taxonomy Insight

August 9, 2025

How Immune Cells Flip the Switch to Launch an Attack

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    135 shares
    Share 54 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Free-Standing Porous Carbon Nanofibers for Zinc-Ion Capacitors

Validating 3D Echocardiography for Pediatric Heart Assessment

Emergency Ventilator Tested for Resource-Limited ICUs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.