• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists create fully electronic 2-dimensional spin transistors

Bioengineer by Bioengineer
September 17, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Talieh Ghiasi et al.

Physicists from the University of Groningen constructed a two-dimensional spin transistor, in which spin currents were generated by an electric current through graphene. A monolayer of a transition metal dichalcogenide (TMD) was placed on top of graphene to induce charge-to-spin conversion in the graphene. This experimental observation was described in the issue of the journal Nano Letters published on 11 September 2019.

Spintronics is an attractive alternative way of creating low-power electronic devices. It is not based on a charge current but on a current of electron spins. Spin is a quantum mechanical property of an electron, a magnetic moment that could be used to transfer or store information.

Heterostructure

Graphene, a 2D form of carbon, is an excellent spin transporter. However, in order to create or manipulate spins, interaction of its electrons with the atomic nuclei is needed: spin-orbit coupling. This interaction is very weak in carbon, making it difficult to generate or manipulate spin currents in graphene. However, it has been shown that spin-orbit coupling in graphene will increase when a monolayer of a material with heavier atoms (such as a TMD) is placed on top, creating a Van der Waals heterostructure.

In the Physics of Nanodevices group, led by Professor Bart van Wees at the University of Groningen, Ph.D. student Talieh Ghiasi and postdoctoral researcher Alexey Kaverzin created such a heterostructure. Using gold electrodes, they were able to send a pure charge current through the graphene and generate a spin current, referred to as the Rashba-Edelstein effect. This happens due to the interaction with the heavy atoms of the TMD monolayer (in this case, tungsten disulfide). This well-known effect was observed for the first time in graphene that was in proximity to other 2D materials.

Symmetries

‘The charge current induces a spin current in the graphene, which we could measure with spin-selective ferromagnetic cobalt electrodes,’ says Ghiasi. This charge-to-spin conversion makes it possible to build all-electrical spin circuits with graphene. Previously, the spins had to be injected through a ferromagnet. ‘We have also shown that the efficiency of the generation of the spin accumulation can be tuned by the application of an electric field,’ adds Ghiasi. This means that they have built a spin transistor in which the spin current can be switched on and off.

The Rashba-Edelstein effect is not the only effect that produces a spin current. The study shows that the Spin-Hall effect does the same, but that these spins are oriented differently. ‘When we apply a magnetic field, we make the spins rotate in the field. Different symmetries of the spin signals generated by the two effects in interaction with the magnetic field help us to disentangle the contribution of each effect in one system,’ explains Ghiasi. It was also the first time that both types of charge-to-spin conversion mechanisms were observed in the same system. ‘This will help us to gain more fundamental insights into the nature of spin-orbit coupling in these heterostructures.’

Graphene Flagship

Apart from the fundamental insights that the study can provide, building an all-electrical 2D spin transistor (without ferromagnets) has considerable significance for spintronic applications, which is also a goal of the EU Graphene Flagship. ‘This is especially true because we were able to see the effect at room temperature. The spin signal decreased with increasing temperature but was still very much present under ambient conditions.’

###

Reference: Talieh S. Ghiasi, Alexey A. Kaverzin, Patrick J. Blah, and Bart J. van Wees: Charge-to-Spin Conversion by the Rashba-Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature. Nano Letters, 27 August 2019 (first online 13 August).

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2019/09/20190912_spintransistor

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.9b01611

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsElectromagneticsHardwareMaterialsSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Infant Antibiotic Use Linked to Childhood Overweight Risk

3D Sinus Reconstruction: Dolphin vs. Mimics Software Comparison

Coeae6g Drives Insecticide Cross-Resistance in Malaria Mosquito

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.