• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

WVU astronomers help detect the most massive neutron star ever measured

Bioengineer by Bioengineer
September 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: B. Saxton (NRAO/AUI/NSF)

West Virginia University researchers have helped discover the most massive neutron star to date, a breakthrough uncovered through the Green Bank Telescope in Pocahontas County.

The neutron star, called J0740+6620, is a rapidly spinning pulsar that packs 2.17 times the mass of the sun (which is 333,000 times the mass of the Earth) into a sphere only 20-30 kilometers, or about 15 miles, across. This measurement approaches the limits of how massive and compact a single object can become without crushing itself down into a black hole.

The star was detected approximately 4,600 light-years from Earth. One light-year is about six trillion miles.

These findings, from the National Science Foundation-funded NANOGrav Physics Frontiers Center, were published today (Sept. 16) in Nature Astronomy.

Authors on the paper include Duncan Lorimer, astronomy professor and Eberly College of Arts and Sciences associate dean for research; Eberly Distinguished Professor of Physics and Astronomy Maura McLaughlin; Nate Garver-Daniels, system administrator in the Department of Physics and Astronomy; and postdocs and former students Harsha Blumer, Paul Brook, Pete Gentile, Megan Jones and Michael Lam.

The discovery is one of many serendipitous results, McLaughlin said, that have emerged during routine observations taken as part of a search for gravitational waves.

“At Green Bank, we’re trying to detect gravitational waves from pulsars,” she said. “In order to do that, we need to observe lots of millisecond pulsars, which are rapidly rotating neutron stars. This (the discovery) is not a gravitational wave detection paper but one of many important results which have arisen from our observations.”

The mass of the pulsar was measured through a phenomenon known as “Shapiro Delay.” In essence, gravity from a white dwarf companion star warps the space surrounding it, in accordance with Einstein’s general theory of relativity. This makes the pulses from the pulsar travel just a little bit farther as they travel through the distorted spacetime around white dwarf. This delay tells them the mass of the white dwarf, which in turn provides a mass measurement of the neutron star.

Neutron stars are the compressed remains of massive stars gone supernova. They’re created when giant stars die in supernovas and their cores collapse, with the protons and electrons melting into each other to form neutrons.

To visualize the mass of the neutron star discovered, a single sugar-cube worth of neutron-star material would weigh 100 million tons here on Earth, or about the same as the entire human population.

While astronomers and physicists have studied these objects for decades, many mysteries remain about the nature of their interiors: Do crushed neutrons become “superfluid” and flow freely? Do they breakdown into a soup of subatomic quarks or other exotic particles? What is the tipping point when gravity wins out over matter and forms a black hole?

“These stars are very exotic,” McLaughlin said. “We don’t know what they’re made of and one really important question is, ‘How massive can you make one of these stars?’ It has implications for very exotic material that we simply can’t create in a laboratory on Earth.”

Pulsars get their name because of the twin beams of radio waves they emit from their magnetic poles. These beams sweep across space in a lighthouse-like fashion. Some rotate hundreds of times each second.

Since pulsars spin with such phenomenal speed and regularity, astronomers can use them as the cosmic equivalent of atomic clocks. Such precise timekeeping helps astronomers study the nature of spacetime, measure the masses of stellar objects and improve their understanding of general relativity.

###

Media Contact
Jake Stump
[email protected]

Tags: AstronomyAstrophysicsSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    69 shares
    Share 28 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Liver Response in Newly Diagnosed Light-Chain Amyloidosis

Phthalate Exposure: Effects on Women’s Hormones and PCOS

Study of Children’s Ingestion of Superabsorbent Polymer Beads

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.