• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The positive and negative role of LRH-1 during inflammation

Bioengineer by Bioengineer
July 25, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Thomas Brunner

Immune cells prevent bacteria, parasites or viruses from entering the body when, for example, the intestinal epithelium is injured. They respond with restricted inflammatory reactions, which are controlled via various processes in the healthy organism. If an organism suffers from Crohn’s disease, for example, the immune cells are continuously activated. The research group led by Professor Thomas Brunner at the University of Konstanz has demonstrated that the transcription factor LRH-1 plays a key role in immune cells. That this protein can actually be found in so-called T cells was already confirmed by his team several years ago. The researchers in Konstanz were now able to show that the transcription factor is responsible for ensuring that an organism’s immune defence functions properly. If it is not present, no immune response is activated. The researchers view this research result as an opportunity to develop therapeutic approaches or drugs that will control the damaging immune response by inhibiting LRH-1, as in Crohn’s disease or liver diseases.

A transcription factor is a protein that ensures that a gene is transcribed and a corresponding gene product is generated. It regulates the so-called gene expression process, which puts the gene’s information into effect. The transcription factor LRH-1 is particularly common in the intestine and liver. The elimination of LRH-1 in the epithelial cells of these organs has little effect on them, though. However, the biologists found that the T cells, which are crucial for the immune response, hardly divide when LRH-1 is eliminated. With fatal consequences: T cells have receptors that recognize specific foreign substances. A large number of them are needed to control pathogens such as viruses, which multiply rapidly after infiltrating the body. To fight these viruses, the T cells can usually divide very quickly – even faster than cancer cells – but in a more controlled manner.

“Without the LRH-1 transcription factor, it is practically impossible to trigger immune responses. As a result, the body can no longer protect itself against pathogens”, explains Thomas Brunner.

That is the negative aspect. On the positive side, however, this inhibition of the immune cell expansion can be used to treat inflammatory diseases such as Crohn’s disease or hepatitis. In the process of continuously fighting either harmless bacteria or viruses, the immune system’s permanent response actually damages the organs. The overall aim is to shut down this out-of-control immune response. In fact, a pharmacological inhibitor that can specifically switch off the LRH-1 transcription factor activity already exists. A test has demonstrated that it actually blocks the T cells, thereby reducing the T cell mediated diseases.

Thomas Brunner and his team confirmed that the inhibition of LRH-1 yielded the hoped for results. “In order to test whether or not the inhibitor really works, we administered it to treat experimentally induced hepatitis. It did work. The damage was reduced”.

###

Facts:

  • The research group around Professor Thomas Brunner at the University of Konstanz discovers the role that the LRH-1 protein plays in the immune system
  • Inhibiting this protein could help treat inflammatory diseases
  • Original publication: C. Seitz; J. Huang; A.-L. Geiselhöringer; P. Galbani-Bianchi; S. Michalek; T.S. Phan; C. Reinhold; L. Dietrich; C. Schmidt; N. Corazza; E. Delgado; T. Schnalzger; K. Schoonjans; T. Brunner: The orphan nuclear receptor LRH-1/NR5a2 critically regulates T cell functions. Science Advances, 17 July 2019: Vol. 5, no. 7, eaav9732. DOI: https://doi.org/10.1126/sciadv.aav9732
  • On the discovery of LRH-1 in immune cells: https://www.ncbi.nlm.nih.gov/pubmed/28406481
  • The project was funded by the German Research Foundation (DFG).

Note to editors:
You can download a photo here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/die_positive_und_negative.jpg

Caption: Detection of immune cells using specific antibodies in tissue sections of the spleen of wild type animals (left panel) and mice with T cell-specific deletion of LRH-1 (right panel). (Green: T lymphocytes, blue: B lymphozytes, red: macrophages).

Copyright: Thomas Brunner

Contact:

University of Konstanz

Communications and Marketing

Phone: +49 7531 88-3603

Email: [email protected]

– uni.kn/en

Media Contact
Julia Wandt
[email protected]

Original Source

https://www.uni-konstanz.de/en/university/news-and-media/current-announcements/news/news-in-detail/Test-Die-positive-und-negative-/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aav9732

Tags: BiologyImmunology/Allergies/AsthmaMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Stefan Kappe, Ph.D., Renowned Malaria Researcher, Named Director of UM School of Medicine’s Center for Vaccine Development and Global Health

Stefan Kappe, Ph.D., Renowned Malaria Researcher, Named Director of UM School of Medicine’s Center for Vaccine Development and Global Health

September 8, 2025

TriCAM Study Explores Complementary Medicine in Stem Cell Transplants

September 8, 2025

PRMT1 Protein Mitigates Brain Damage After Ischemia by Inhibiting RIPK1-Driven Cell Death Pathways

September 8, 2025

New C-3-Substituted Oleanolic Acid Benzyl Amide Shows Promise Against Influenza A by Inhibiting PA–PB1 Interaction and Regulating Macrophage Inflammation

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.