• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Understanding the mode of action of the primaquine: New insights into a 70 year old puzzle

Bioengineer by Bioengineer
July 19, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at LSTM have taken significant steps in understanding the way that the anti-malarial drug primaquine (PQ) works, which they hope will lead to the development of new, safer and more effective treatments for malaria.

The work, which was predominantly funded following an award from the Medical Research Council, has been carried out by the LSTM’s Centre for Drugs and Diagnostic (CDD). The results are published in the journal Nature Communications.

LSTM’s Professor Giancarlo Biagini explained: “The antimalarial primaquine is a cornerstone of global efforts to eliminate malaria, for some 70 years it has been the only drug registered that has been demonstrated to be able to cure relapsing malaria and block transmission of the disease. However, little has previously been understood about the drug’s mode of action, which is seriously undermining efforts to improve the safety and pharmacology profile of this important drug class.”

The team at LSTM, working with key collaborators including Professor Paul O’Neill (University of Liverpool), Professor David Baker (London School of Hygiene and Tropical Medicine) and Professor Sangeeta Bhatia (Massachusetts Institute of Technology, USA) were able to replicate the interaction between the drug and the host enzymes which catalyse the generation of cytotoxic amounts of hydrogen peroxide from metabolites of PQ. The experiments were able to demonstrate why the drug displays exquisite selectivity against specific parasite stages and also explains why only very small (nM) catalytic concentrations of metabolites are necessary to kill the parasites.

The search for new antimalarials is vital in the drive towards global malaria elimination, especially given that PQ is potentially lethal to people with the genetic disorder glucose-6-phoshate dehydrogenase (G6PD) deficiency, which affects millions of people in malaria-endemic countries.

“This is why an understanding of how the drug works is central to replicating its most significant elements.” Continued Professor Biagini: “This work has been possible with CDD given the multidisciplinary nature of the team. The current study makes a significant advancement in our understanding of PQ mechanism of action. This new knowledge is key to the development of newer and safer, broad-spectrum antimalarial drugs, work currently underway within our group.”

###

Media Contact
Clare Bebb
[email protected]

Related Journal Article

https://www.lstmed.ac.uk/news-events/news/understanding-the-mode-of-action-of-the-antimalarial-primaquine-new-insights-into-a
http://dx.doi.org/10.1038/s41467-019-11239-0

Tags: Medicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Psycho-Social Support: Health Professionals’ Help-Seeking Trends

November 10, 2025

Abnormal Chest X-Rays Predict Tuberculosis Risk

November 10, 2025

Ketohexokinase Link Drives Alcohol Intake and Liver Disease

November 10, 2025

Oat Protein Iron Hybrids: Effective Fortification Solution

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multidomain Lifestyle Boosts Cancer Survivors’ Quality

Psycho-Social Support: Health Professionals’ Help-Seeking Trends

Abnormal Chest X-Rays Predict Tuberculosis Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.