• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

CNIO researchers find a method to select for mammalian cells with half the number of chromosomes

Bioengineer by Bioengineer
July 16, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This innovative method might facilitate genetic research in complex organisms like mammals, humans included, in a fast, efficient way

IMAGE

Credit: CNIO

Since the emergence of molecular genetics more than fifty years ago, scientists have tried to isolate haploid mammalian cells, that is, cells with half the number of chromosomes contained in somatic cells. Haploid cells are a powerful genetic tool to analyse gene function. In the past decade, a number of researchers finally succeeded in developing haploid cell line cultures. However, these cell lines are unstable and have a tendency for diploidisation. Now, researchers at the Spanish National Cancer Research Centre (CNIO) have identified chemical compounds that increase the stability of mammalian haploid cell lines. The study is published in the latest issue of Cell Reports.

With the exception of sperm and egg cells, human cells have two sets of chromosomes, one inherited from each parent. Organisms with only one set of chromosomes, however, can be extremely useful for scientific research. “Cells with a single set of chromosomes are a powerful tool to study gene functions, because you can modify just one copy of the gene to analyse its effects on the organism,” says Óscar Fernández-Capetillo, Head of the CNIO Genomic Instability Group and leader of the study.

Haploid cells in microorganisms such as yeasts have been extensively used for gaining powerful insights that have revolutionised the history of biomedicine. Yeasts were used, for instance, by the 2001 Nobel Laureates in Physiology to identify key molecules that regulate the cell cycle in eukaryotic organisms. However, yeasts and humans are separated by a billion years of evolution, and many biological mechanisms have not been retained, which means they cannot be studied in these microorganisms.

Since mammalian haploid cell cultures were not available until recently, researchers have used other tools to conduct genetic screens, such as interfering RNA. However, these alternative strategies have non-specific effects that are inconvenient for any genetic approach. Over the past years, scientists have managed to isolate mammalian haploid cell lines. First, a near-haploid cell line was obtained from a leukaemia patient; years later, methods were developed to establish embryonic haploid stem cell lines from a number of mammals, including humans. However, all these animal haploid cell cultures are highly unstable and become diploid quickly.

“Two years ago, we found that haploid cells activate mechanisms of cell death via the p53 protein; as a result, haploid cells are no longer viable in culture and progressively disappear,” says Fernández-Capetillo(1). “These results explained why it is so difficult to maintain animal haploid cells in the lab.”

Now, CNIO researchers have used chemical screening methods to search among nearly 1,000 compounds for those that select haploid cells against cells with a larger number of chromosomes. The study revealed that a precursor in the synthesis of the anticancer agent Taxol named DAB (10-Deacetylbacattin III) allows haploid cells to grow better and replace diploid cells in cultures.

“This compound acts on microtubules, factors involved in the migration of chromosomes during cell division. When microtubules are challenged using DAB, cells with a larger number of chromosomes are more seriously affected, while cells with a lower number of chromosomes are able to continue with cell division.” This effect is not limited to haploid cells, since tetraploid cells (cells with four sets of chromosomes) exposed to DAB are also more significantly affected than diploid cells. In other words, this strategy allows researchers to generically select for cells with a lower number of chromosomes in mixed cultures of mammalian cells.

Regardless of the usefulness of these results for researchers working with animal haploid cells, the study is also of relevance for cancer researchers, as the effects of DAB can also be obtained with small doses of the anti-cancer drug Taxol. In this context, the authors want to propose that low doses of taxanes might allow for the selective elimination of polyploid cells, which recent genomic studies indicate might be present in up to 37 per cent of human tumors. Thus, “the results of this study might help identify cancer patients that might preferentially benefit from a treatment using taxol or other taxane derivatives,” says Fernández-Capetillo.

###

This study has been funded by the Spanish Ministry of Science, Innovation and Universities, the National Institute of Health Carlos III, Boehringer Ingelheim Fonds, the Botín Foundation and Banco Santander through Santander Universities, the European Research Council and the Spanish Association Against Cancer (AECC).

Reference article: A chemical screen identifies compounds capable of selecting for hapolidy in mammalian cells. Teresa Olbrich et al (Cell Reports, 2019). DOI: 10.1016/j.celrep.2019.06.060

(1) A p53-dependent response limits the viability of mammalian haploid cells. Teresa Olbrich, Cristina Mayor-Ruiz, Maria Vega-Sendino, Sergio Ruiz, Oscar Fernandez-Capetillo, Carmen Gomez, Sagrario Ortega (PNAS 2017). DOI: 10.1073/pnas.1705133114

Media Contact
Nuria Noriega
[email protected]

Tags: BiochemistryBiologyBiotechnologycancerCell BiologyClinical TrialsEvolutionGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

LC-MS Reveals MFER-Mc Treats Liver Cancer Pathways

December 27, 2025

LncRNA CYTOR’s Role in Triple-Negative Breast Cancer

December 27, 2025

MicroRNA and Oxidative Stress in Ovarian Cancer

December 27, 2025

RNA-Guided STAT3 Shapes T Cell Fate in NSCLC

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High Blood Sugar Affects IVF Embryo Development

Emulating Doctors: Cost-Effective Cognitive Impairment Diagnosis

Funding Differences in Advance Care Planning Services

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.