• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UMass Amherst scientist awarded American Cancer Society Grant for immunotherapy study

Bioengineer by Bioengineer
July 15, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research aims to outsmart cancer by reprogramming immune system cells

Credit: UMass Amherst

Biomedical engineer Ashish Kulkarni, assistant professor of chemical engineering at the University of Massachusetts Amherst, has been awarded a four-year, $792,000 grant from the American Cancer Society to advance his interdisciplinary lab’s promising cancer immunotherapy research.

Building on the groundbreaking discoveries from an earlier study involving melanoma and breast cancer in animal models, the new preclinical research focuses on urothelial bladder cancer, which has a high recurrence rate and has seen limited treatment breakthroughs in recent decades.

Current immunotherapy drugs for bladder cancer are effective only for a subset of patients, Kulkarni explains, because of the way the cancer suppresses the immune system. “Despite the standard of care, a lot of patients relapse,” he says.

The new immunotherapy strategy being developed addresses that challenge and has the potential to revolutionize bladder cancer treatment, Kulkarni says.

Cancer has a way of turning off the body’s immune system response so that macrophage cells that normally would attack the disease are not only rendered powerless but recruited to help the malignant tumor grow. “We want to reverse that,” Kulkarni says.

His team designs so-called self-assembled supramolecular nanoparticles, which are capable of simultaneously targeting the immune suppressor cells in tumors and reactivating the immune cells capable of eating the tumor. These supramolecules are designed from lipids, some of the body’s own building blocks, and have been found to be nontoxic, versatile and efficient in the delivery of drugs and other biomedical materials.

“This research brings together the latest advances in cancer immunotherapy with novel biomaterials to engineer a nanotherapeutic platform to activate innate and adaptive immunity,” Kulkarni says. “This novel combination therapy increases the impact and could result in a dramatic increase in survival in bladder cancer while minimizing the side effects of the therapy.”

His lab’s previous research with breast cancer and melanoma showed that the designer supramolecule was capable of repolarizing macrophage cells to inhibit tumor growth and metastasis, significantly improving survival in breast cancer and melanoma mice models.

The new research seeks to determine the optimal dosage and test the nanotherapy’s safety and effectiveness in bladder cancer, again using mouse models. Kulkarni says the next step would be testing the immunotherapy regimen on people with cancer.

“We are hoping to have something that can translate into clinical trials in the future,” he says.

###

Media Contact
Patty Shillington
[email protected]

Original Source

https://www.umass.edu/newsoffice/article/research-aims-outsmart-cancer

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologycancerImmunology/Allergies/AsthmaMedicine/HealthMicrobiologyMolecular BiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025
Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Signal Processing: The Traveling-Wave Amplifier

Mobile Health Boosts Clinic Attendance for HIV Patients

Discover Mutactimycins H-J: Antimycobacterial Treasures Uncovered!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.