• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

2D perovskite materials found to have unique, conductive edge states

Bioengineer by Bioengineer
July 15, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Shashank Priya lab, Penn State

A new class of 2D perovskite materials with edges that are conductive like metals and cores that are insulating was found by researchers who said these unique properties have applications in solar cells and nanoelectronics.

“This observation of the metal-like conductive states at the layer edges of these 2D perovskite materials provides a new way to improve the performance of next-generation optoelectronics and develop innovative nanoelectronics,” said Kai Wang, assistant research professor in materials science and engineering at Penn State and lead author on the study.

Wang and a team of Penn State researchers made the discovery while synthesizing lead halide perovskite materials for use in next generation solar cells. Perovskites, materials with a crystal structure good at absorbing visible light, are an area of focus in developing both rigid and flexible solar cells that can compete commercially with traditional cells made with silicon. These 2D perovskite materials are cheaper to create than silicon and have the potential to be equally efficient at absorbing sunlight.

The findings, reported in Science Advances, provide new insights into the charge and energy flow in perovskite materials, important for the continued advancement of the technology, the scientists said.

“I think the beauty of this work is that we found a material that has completely different properties along the edges compared to the core,” said Shashank Priya, professor of materials science and engineering and associate vice president for research at Penn State. “It’s very unusual that the current can flow around the edges and not in the center of a material, and this has huge implications for the design of solar cell architectures.”

The 2D perovskite materials consist of thin, alternately stacked organic and inorganic layers. The organic layers protect the inorganic layers of lead halide crystals from moisture that can degrade 3D versions of the material. This layered structure results in a large variation in conductivity along perpendicular and parallel directions.

Using scanning and mapping techniques, the researchers found that sharp edges of the 2D single crystals exhibited extraordinarily large free charge carrier density.

“This work reveals the distinct differences in optoelectronic properties between the crystal layer edge and the core region, which can give a hint toward answering other important questions raised in the field of optoelectronics about these 2D perovskite materials,” Wang said.

Researchers said the findings could boost performance of solar cells and LED technology by providing additional charge pathways within the devices. The findings also open the door for the development of innovative one-dimensional electrical conduction in nanoelectronics.

“Across the length of these materials, you have a junction between metal and semiconductor, and there are a lot of hypothetical devices proposed based on that junction,” Priya said.

Because of the strong current found at the edges, 2D perovskite crystals may also be a good candidate for a triboelectric nanogenerator, the researchers said.

Nanogenerators convert motion into electric power, which could lead to wearable technology that charges phones and other devices using both light and mechanical energy and inputs.

###

Also contributing from Penn State were Congcong Wu, associate research professor, and Dong Yang and Ke Wang, assistant research professors.

The Air Force Office of Scientific Research, the Office of Naval Research and the Army Small Business Innovation Research program provided funding for this research.

Media Contact
A’ndrea Elyse Messer
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet7Share2ShareShareShare1

Related Posts

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025
Atom-photon entanglement breakthrough opens new horizons for future quantum networks

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025

Charting the Cosmos Made Simpler

September 30, 2025

Scientists Discover Room-Temperature Method to Enhance Light-Harvesting and Emission Devices

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Molecular Learning with Hypergraph Insights

Correlated CDC20, UBCH10 Signal Poor Cancer Prognosis

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 59 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.