• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop new method for studying early life in ancient rocks

Bioengineer by Bioengineer
July 8, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research results could also inform the search for life on Mars

Scientists have developed a new method for detecting traces of primordial life in ancient rock formations using potassium.

The method relies on searching for high concentrations of potassium in ancient sedimentary rocks, rather than traditional methods that look for carbon, sulfur, or nitrogen–which can appear in ancient rocks through processes unrelated to ancient life.

“Our findings show that microbial biofilms trapped potassium from ancient seawater and facilitated its accumulation into clay minerals that were buried on the seafloor,” explainedKurt Konhauser, professor in the University of Alberta’s Department of Earth and Atmospheric Sciences and co-author on the study. “This is critical because there is no abiotic mechanism that can be used to explain the potassium enrichment aside from life itself.”

The study examined clay particles from the Francevillian Formation located in Gabon, on the west coast of central Africa. This 2.1 billion-year-old formation hosts well-preserved microfossils in clay.

2.1 billion year old sediment from Gabon with ancient microbial mat features and biologically-induced potassium enrichment.

“In our quest to find evidence of early life on Earth, we have been limited to looking for a number of signatures that have all proven ambiguous, because, unfortunately, the signatures can be explained by both bacterial and abiotic processes,” explained Konhauser. “Our results indicate that a different signature–potassium–is potentially a more unique tracer, as it could only have been created through the metabolism of living bacteria.”

###

The research was led by Jérémie Aubineau and Abder El Albani from the University of Poitiers, France. The paper, “Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth,” was published in Nature Communications (doi: 10.1038/s41467-019-10620-3).

Media Contact
Katie Willis
[email protected]

Related Journal Article

https://www.ualberta.ca/science/science-news/2019/july/early-life-new-method
http://dx.doi.org/10.1038/s41467-019-10620-3

Tags: Atmospheric ScienceEarth ScienceEvolutionGeographyGeology/SoilGeophysics/GravitySpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.