• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers at IDIBELL-ICO describe a new resistance mechanism

Bioengineer by Bioengineer
July 2, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The mechanism does not activate the reduction of oxygen in the cells of the tumor, contrary to what common drugs, called anti-angiogenic, usually cause

IMAGE

Credit: Iratxe Zuazo

Researchers at IDIBELL-ICO describe a new resistance mechanism to therapies that prevent the formation of blood vessels

  • The mechanism does not activate the reduction of oxygen in the cells of the tumor, contrary to what common drugs, called anti-angiogenic, usually cause.
  • In response to treatment, the immune cells of the tumor act as elements that make the tumor malignant.

Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) and the ProCure Program of the Catalan Institute of Oncology (ICO) published today at Cancer Research a study describing a new mechanism in cancer that turns cells into malignant cells and contradicts what had been published so far about drug resistance that prevent the formation of blood vessels (anti-angiogenics). The research has been led by Dr. Oriol Casanovas, from the group of Tumor Angiogenesis of the IDIBELL, and the Dra. Iratxe Zuazo has participated as one of the first authors.

In the search for alternative factors to fight cancer, antibody development as a therapeutic route is one of them. Antibodies can have an anti-tumor effect, preventing tumors from developing properly. In this study, scientists observed that one of these antibodies led to similar effects to those known for traditional antiangiogenic medications. However, the initial response to treatment culminated in the appearance of long-term resistance and malignancy through a mechanism unknown to date.

“In the formation of blood vessels (angiogenesis) it had been described that the conditions of low oxygen concentration (hypoxia) in the tumor were the cause of malignization of the tumor cells that became more aggressive and migrated” says Dr. Iratxe Zuazo, “but our samples did not present hypoxia conditions and we still had this effect”.

The antibody of the study had the target Semaphorin 4D (Sema4D). Semaphorins are a large and diverse family of proteins from outside the cells, involved in cell signaling, and are essential for the development and maintenance of many organs and tissues. Some of them have implications for angiogenesis and cancer progression. Its name comes from the Greek semaphero, that means “bearer of signals”.

Sema4D is a protein that is expressed predominantly in the membrane of solid tumors, in cancers such as breast, prostate and colon cancer. This protein is also found in tumor-associated macrophages (TAMs), which are immune cells that play an important role in tumor invasion, tumor formation and in metastasis. The 4D Semaphorin is also related to the formation of blood vessels.

Faced with this new situation, the researchers looked for which could be the differential factor from what was known to date, and they realized that there was a large presence of macrophages. They saw that, in the presence of the anti-Sema4D antibody, the macrophages secreted a molecule named SDF1, which causes the tumor cells to migrate more: they present more motility and more invasion.

These tests were done in transgenic mice models and what was observed was an increased survival of animals in the short term. In the long term, however, an unwanted effect (metastasis) was generated, significantly worsening the condition of the mice.

“Now that we know the new mechanism, we can begin to look for a way to inhibit it – for example, avoiding secretion of SDF1- and, in this way, to give an alternative to only have the positive effects of the antibody” explains Dr. Oriol Casanovas. He adds that “depending on each case, treatments could be carried out simultaneously with two drugs at the same time”.

“What we propose is that the immune system is also taken into account when doing some therapies, because now we know that there may be the possibility of activating it with some drugs”, concludes Dr. Iratxe Zuazo.

###

Media Contact
Gemma
[email protected]

Original Source

http://www.idibell.cat/ca/node/68114

Related Journal Article

http://dx.doi.org/10.1158/0008-5472.CAN-18-3436

Tags: cancerCardiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

October 4, 2025

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Older Adults: Shared Decision-Making in Nursing

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.