• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Organic farming enhances honeybee colony performance

Bioengineer by Bioengineer
June 26, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bees are valuable to humans not only because they produce honey, but also because they pollinate wildflowers and food crops. They exclusively eat nectar and pollen. So in areas where intensive agriculture is practised, they suffer from the thin supply of flowers in May and June, when cultivated oilseed rape (colza) and sunflower are not in bloom. During that period, pollen collection, honey production, and colony growth slow. An article published in the Journal of Applied Ecology shows that organic farming can limit this decline. Land on which organic crops are grown offers domesticated bees more resources, especially spontaneous vegetation (unjustly dubbed ‘weeds’). After examining data spanning six years for 180 hives in west central France, the researchers found that–compared with bee colonies in areas farmed conventionally–colonies living amid organic farm fields boast 37% more brood, 20% more adult bees, and 53% greater honey production.

The implication is that organically cultivated fields exert unique effects on the bee population. The swell in brood, destined to yield new workers, may be the result of a wider diversity of pollen resources or of lower mortality from local application of pesticides. The surge in honey reserves may reflect availability of melliferous flowers in greater numbers–and over a greater area, corresponding to the range covered by bees in their quest for resources (one to three kilometres in zones where large farm fields are found).

This study was made possible through Ecobee (INRA/CNRS), a unique bee colony monitoring system. Ecobee uses annual data from 50 experimental hives in southwest France to measure the effects of farming practices under real conditions. Previous research conducted by the same team showed that shrinking of brood during the period of flower scarcity resulted in lower colony survival in winter. The present study shows that organic farming can blunt the negative effects of intensive agriculture and increase the survival of bees, which play essential roles as pollinators.

###

Media Contact
Maxime DOS SANTOS
[email protected]

Tags: AgricultureBiodiversityBiologyEcology/EnvironmentEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Guide to Genome Sequencing in Emerging Organisms

November 28, 2025
blank

Mapping Arabidopsis Proteins for Heat Resistance Insights

November 28, 2025

Bacillus subtilis WL2.3: A Natural Defense for Potatoes

November 28, 2025

Parental Care vs. Infanticide in Male Poison Frogs

November 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Cessation Tools for Indigenous Tobacco Smokers

FOXP2 Targets Language Genes in Zebra Finch Brain

Sustained Exercise Engagement in Older Adults: Safe Step Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.