• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

These neurons affect how much you do, or don’t, want to eat

Bioengineer by Bioengineer
June 25, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors. These findings could help those suffering from disease-induced appetite loss or over-eating.

Like a symphony, multiple brain regions work in concert to regulate the need to eat. University of Arizona researchers believe they have identified a symphony conductor – a brain region that regulates appetite suppression and activation – tucked within the amygdala, the brain’s emotional hub.

The UA Department of Neuroscience team found the neurocircuitry controlling appetite loss, called anorexia, said assistant professor Haijiang Cai, who is a member of the BIO5 Institute and heads up the neuroscience lab that ran the study.

Anorexia can be triggered by disease-induced inflammation, and can negatively impact recovery and treatment success. It is harmful to quality of life and increases morbidity in many diseases, the authors wrote. The paper, “A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding,” was published June 24 in Nature Communications.

To determine if the specific neurons within the amygdala control feeding behavior, researchers inhibited the neurons, which increased appetite. They then activated the neurons, causing a decrease in appetite.

“By silencing the neurons within the circuit, we can effectively block feeding suppression caused by inflammation to make patients eat more,” Cai said. “We used anorexia for simplification, but for people with obesity, we can activate those neurons to help them eat less. That’s the potential impact of this kind of study.”

Feeding sounds simple, but it’s not, Cai related. People feel hunger either to satisfy nutritional deficits or for the reward of eating something good. Once food i found, we check that it’s good before chewing and swallowing. After a certain point, we feel satisfaction.

Theoretically, each step is controlled by different neurociruitry.

“This circuitry we found is really exciting because it suggests that many different parts of brain regions talk to each other,” Cai said. “We can hopefully find a way to understand how these different steps of feeding are coordinated.”

The brain region was found in mice models. The next step is to identify it in humans and validate that same mechanisms exist. If they do, then scientists can find some way to control feeding activities, Cai said.

###

Cai’s co-authors, all of whom were associated with the Department of Neuroscience during the research, are lead author Yong Wang, JungMin Kim, Matthew B. Schmit, Tiffany S. Cho and Caohui Fang. The research was partially funded by the Brain and Behavior Research Foundation.

Media Contact
Mikayla Mace
[email protected]

Related Journal Article

http://uanews.arizona.edu/story/these-neurons-affect-how-much-you-do-or-dont-want-eat
http://dx.doi.org/10.1038/s41467-019-10715-x

Tags: AIDS/HIVBehaviorBiologycancerDiet/Body WeightEating Disorders/ObesityMicrobiologyneurobiologySocial/Behavioral Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

October 4, 2025

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Revolutionizing Preterm Infant Care in Resource-Limited Settings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.