• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

UToledo research links fracking to higher radon levels in Ohio homes

Bioengineer by Bioengineer
June 18, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The study also found average radon concentrations among tested homes across the state are higher than safe levels outlined by U.S. EPA and WHO standards.

IMAGE

Credit: The University of Toledo

A new study at The University of Toledo connects the proximity of fracking to higher household concentrations of radon gas, the second leading cause of lung cancer in the U.S.

Measuring and geocoding data from 118,421 homes across all 88 counties in Ohio between 2007 and 2014, scientists found that closer distance to the 1,162 fracking wells is linked to higher indoor radon concentrations.

“The shorter the distance a home is from a fracking well, the higher the radon concentration. The larger the distance, the lower the radon concentration,” Dr. Ashok Kumar, Distinguished University Professor and chair of the UToledo Department of Civil and Environmental Engineering, said.

The study also found the average radon concentrations among all tested homes across the state are higher than safe levels outlined by U.S. Environmental Protection Agency and World Health Organization standards. The average is 5.76 pCi/l, while the EPA threshold is 4.0 pCi/l. The postal code 43557 in the city of Stryker has the highest radon concentration at 141.85 pCi/l for this data set.

“We care about air quality,” Dr. Yanqing Xu, assistant professor in the UToledo Department of Geography and Planning, said. “Our motivation is to save the lives of Ohioans. I hope this eye-opening research inspires families across the state to take action and have their homes tested for radon and, if needed, install mitigation systems to protect their loved ones.”

The results of the study were recently published in the journal Frontiers in Public Health. The research is a collaboration between UToledo’s Department of Civil and Environmental Engineering and Department of Geography and Planning. The radon data collection was supported by grants from the Ohio Department of Health and the U.S. Environmental Protection Agency.

Radon, which cannot be smelled or seen, begins as uranium found naturally in soil, water and rocks, but transforms into gas as it decays.

Fracking, or drilling the rock formation via hydraulic fracturing, stimulates the flow of natural gas. In Ohio, natural gas is available in deposits of the ancient Marcellus and Utica shales.

Most fracking wells are located in eastern Ohio, while Athens County has the highest number of fracking wells with 108. Fulton County is the only county with more than 20 fracking wells in western Ohio.

The researchers used data from the publicly accessible Ohio Radon Information System (ORIS), which the UToledo Department of Civil and Environmental Engineering started developing more than 25 years ago and maintains to improve public knowledge about indoor radon concentration. Licensed testers collect data each year in basements and first floors of homes in Ohio’s 1,496 zip codes.

“You can find the average radon concentration in your zip code on the website,” Kumar said.

Xu, a health geographer who previously studied obesity, installed a radon mitigation system after testing her home with a $10 kit.

“Shale is not in Toledo, but radon can get into homes because of uranium concentration in the soil, unrelated to fracking,” Xu said. “My 2-year-old son likes to play in the basement, but radon concentration is higher in the basement. I did not hesitate even though the system cost around $1,000.”

The data in the study are from self-reported devices and not distributed equally throughout Ohio.

###

Media Contact
Christine Billau
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fpubh.2019.00076

Tags: Biomedical/Environmental/Chemical EngineeringcancerCivil EngineeringEarth ScienceEnvironmental HealthGeographyGeology/SoilPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

August 3, 2025
blank

Elranatamab Outperforms UK Real-World Myeloma Treatments

August 3, 2025

Adolescents Face Cancer’s Impact on Identity, Sexuality

August 3, 2025

Deep Learning Advances Gastric Cancer Image Analysis

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    52 shares
    Share 21 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Micro- and Nanoplastics Threaten Early-Life Health: Risks

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

Satellite and AI Unite to Estimate Underwater Sound Speed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.