• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Using prevalent technologies and ‘Internet of Things’ data for atmospheric science

Bioengineer by Bioengineer
June 14, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Noam David

The use of prevalent technologies and crowdsourced data may benefit weather forecasting and atmospheric research, according to a new paper authored by Dr. Noam David, a Visiting Scientist at the Laboratory of Associate Professor Yoshihide Sekimoto at the Institute of Industrial Science, The University of Tokyo, Japan. The paper, published in Advances in Atmospheric Sciences, reviews a number of research works on the subject and points to the potential of this innovative approach.

Specialized instruments for environmental monitoring are often limited as a result of technical and practical constraints. Existing technologies, including remote sensing systems and ground-level tools, may suffer from obstacles such as low spatial representativity (in situ sensors, for example) or lack of accuracy when measuring near the Earth’s surface (satellites). These constraints often limit the ability to carry out representative observations and, as a result, the capacity to deepen our existing understanding of atmospheric processes. Multi-systems and IoT (Internet of Things) technologies have become increasingly distributed as they are embedded into our environment. As they become more widely deployed, these technologies generate unprecedented data volumes with immense coverage, immediacy and availability. As a result, a growing opportunity is emerging to complement state-of-the-art monitoring techniques with the large streams of data produced. Notably, these resources were originally designed for purposes other than environmental monitoring and are naturally not as precise as dedicated sensors. Therefore, they should be treated as complementary tools and not as a substitute. However, in the many cases where dedicated instruments are not deployed in the field, these newly available ‘environmental sensors’ can provide some response which is often invaluable.

Smartphones, for example, contain weather-sensitive sensors and recent works indicate the ability to use the data collected by these devices on a multisource basis to monitor atmospheric pressure and temperature. Data shared as an open source in social networks can provide vital environmental information reported by thousands of ‘human observers’ directly from an area of interest. Wireless communication links that form the basis for transmitting data between cellular communication base stations serve as an additional example. Weather conditions affect the signal strength on these links and this effect can be measured. As a result the links can be utilized as an environmental monitoring facility. A variety of studies on the subject point to the ability to monitor rainfall and other hydrometeors including fog, water vapor, dew and even the precursors of air pollution using the data generated by these systems.

Notably, the data from these new ‘sensors’ could be assimilated into high-resolution numerical prediction models, and thus may lead to improvements in forecasting capabilities. Put to use, this novel approach could provide the groundwork for developing new early-warning systems against natural hazards, and generate a variety of products necessary for a wide range of fields. The contribution to public health and safety as a result of these could potentially be of significant value.

###

Media Contact
Zheng Lin
[email protected]

Original Source

https://link.springer.com/article/10.1007/s00376-019-9022-0

Related Journal Article

http://dx.doi.org/10.1007/s00376-019-9022-0

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth ScienceEnvironmental HealthHealth CareInternetScience/Health and the LawTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.