• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Determining risk of recurrence in triple-negative breast cancer

Bioengineer by Bioengineer
June 13, 2019
in Cancer
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Huntsman Cancer Institute

SALT LAKE CITY – A personalized prognosis for patients diagnosed with triple-negative breast cancer was the goal of a new study by Katherine Varley, PhD, researcher at Huntsman Cancer Institute (HCI) and assistant professor of oncological sciences at the University of Utah.

Twenty percent of women diagnosed with breast cancer in the United States will learn they have triple-negative breast cancer. That diagnosis means the three most common proteins known to fuel breast cancer growth–estrogen receptor, progesterone receptor, and HER2–are not present in the tumor. Those patients will not respond to any of the targeted therapies developed to treat breast cancer with those characteristics. After surgery, their only treatment option is chemotherapy. Targeted therapy allows healthy cells to survive, but chemotherapy can kill normal cells when eliminating the cancer cells.

Sixty percent of patients with triple-negative breast cancer will survive more than five years without disease, but four out of ten women will have a rapid recurrence of the disease. There are currently no clinical tests to assess an individual patient’s prognosis, so all patients receive aggressive chemotherapy that can include up to four chemotherapy drugs and six months of treatment. Varley’s new findings, recently published in Cancer Research, could change that. “We could very accurately predict which patients were going to have long-term disease-free survival and which patients were likely to have recurring disease. This is very exciting because it could be the first clinical test to enable personalized prognosis for triple-negative breast cancer patients,” said Varley.

Varley previously discovered triple-negative breast cancer patients, whose tumors naturally turned on an immune response, were disease-free for much longer than those who did not. The objective of the new study was to find a way to translate this discovery into a clinical test to determine which patients have an inherently good prognosis and might safely be treated with less aggressive therapy. “That’s significant because chemotherapy can lead to long-term heart and nerve problems,” Varley noted. “If we can understand which patients need aggressive treatment and which patients will likely do well with less aggressive treatment, we could make a big difference in their lives.”

Varley worked closely on the study with Rachel Stewart, DO, PhD, assistant professor of pathology and laboratory medicine at the University of Kentucky. They used specimens from patients treated at HCI. The tumor samples were taken more than five years ago, so the researchers could determine how each patient fared in the long term. The next step was developing a way to test for biomarkers of the immune response. The biomarker test was developed using formalin-fixed, paraffin-embedded tissues. This is important because it means this test can be run on tumor biopsy specimens that are routinely collected for breast cancer diagnosis.

The research team is currently applying the test to triple-negative breast cancer patient samples from clinical trials of chemotherapy and immunotherapy. Their next step is to validate that the test can be used to predict prognosis and choose the most effective and safest treatments. They are also investigating whether this test could be used for patients with HER2 positive breast cancer, lung cancer, ovarian cancer, and melanoma because the immune response is similar in those diseases.

“We’re working as fast as possible to validate the test so it can benefit patients,” said Varley. “One of my goals is to translate the discoveries we make in basic science and in our genomics research into clinical tests because I know patients are waiting.”

###

This research was supported by the National Cancer Institute grant P30CA042014, the NIH National Center for Advancing Translational Sciences grant KL2TR001996, Huntsman Cancer Foundation, and the Biospecimen Procurement and Translational Pathology and Oncogenomics Shared Resource Facilities of the University of Kentucky Markey Cancer Center, supported by the National Cancer Institute grant P30CA177558.

About Huntsman Cancer Institute:

Huntsman Cancer Institute (HCI) at the University of Utah is the official cancer center of Utah. The cancer campus includes a state-of-the-art cancer specialty hospital as well as two buildings dedicated to cancer research. HCI treats patients with all forms of cancer and is recognized among the best cancer hospitals in the country by U.S. News and World Report. As the only National Cancer Institute (NCI)-Designated Comprehensive Cancer Center in the Mountain West, HCI serves the largest geographic region in the country, drawing patients from Utah, Nevada, Idaho, Wyoming, and Montana. More genes for inherited cancers have been discovered at HCI than at any other cancer center in the world, including genes responsible for hereditary breast, ovarian, colon, head, and neck cancers, along with melanoma. HCI manages the Utah Population Database, the largest genetic database in the world, with information on more than 11 million people linked to genealogies, health records, and vital statistics. HCI was founded by Jon M. and Karen Huntsman.

Media Contact
Debby Rogers
[email protected]

Original Source

https://healthcare.utah.edu/huntsmancancerinstitute/news/2019/06/determining-risk-of-recurrence-in-triple-negative-breast-cancer.php

Related Journal Article

http://dx.doi.org/10.1158/0008-5472.CAN-18-3014

Tags: Breast CancercancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

DNA Repair Deficiency Linked to UTUC Nectin-4

November 5, 2025

Exploring T Cell Immunotherapy in Pancreatic Cancer

November 5, 2025

Moffitt Study Reveals Promising Targeted Therapy Breakthrough for NRAS-Mutant Melanoma

November 4, 2025

Identifying Cardiac Complications in Breast Cancer Survivors

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

Large Language Models Boost Human-Robot Flexible Scheduling

DNA Repair Deficiency Linked to UTUC Nectin-4

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.