• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Sensitive, noninvasive platform detects circulating tumor cells in melanoma patients

Bioengineer by Bioengineer
June 12, 2019
in Cancer
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: E.I. Galanzha et al., Science Translational Medicine (2019)

Scientists have created a laser-based platform that can quickly and noninvasively screen large quantities of blood in patients with melanoma to detect circulating tumor cells (CTCs) – a precursor to deadly metastases. The new system accurately sniffed out hard-to-detect CTCs in 27 of 28 patients with the cancer in as little as 10 seconds and was 1,000 times more sensitive than existing assays (detecting one CTC per liter of blood). Although more work is needed, the test could help identify patients at risk of metastasis and guide the use of laser therapies to kill melanoma cells. Researchers have attempted to assess CTCs to determine the risk of metastasis in patients, but existing assays can only examine small amounts of blood, which sometimes do not capture any CTCs. Seeking a solution, Ekaterina Galanzha and colleagues created a system called the Cytophone that uses laser pulses and focused ultrasound to noninvasively peer under the skin of patients with melanoma, revealing pigmented CTCs that pass through veins in the arm. Galanzha et al. applied their technology to 28 light-skinned patients with melanoma and 19 healthy volunteers and found that it identified CTCs in 27 (96%) of the patients between 10 seconds and 60 minutes without generating false positives in the controls. Importantly, the system’s laser could destroy the detected CTCs, resulting in a large drop in CTC numbers. It also uncovered circulating blood clots – the second leading cause of death in cancer patients. The Cytophone was able to account for other variables such as patient skin pigmentation and movement, but future studies should investigate and expand on the range of skin tones for which the technology could be used.

###

Media Contact
Press Package Team
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aat5857

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Matches Dermatologists in Accuracy of Skin Cancer Assessments

September 15, 2025

Harnessing Deep Learning to Revolutionize Precision Cancer Therapy

September 15, 2025

Tumor-Derived Organoids from Circulating Cells: Unlocking Metastasis Mechanisms and Advancing Precision Medicine Platforms

September 15, 2025

Marine Algae Compounds Fight Pancreatic Cancer Mechanisms

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Matches Dermatologists in Accuracy of Skin Cancer Assessments

MSU Researchers Investigate the Impact of Virtual Sports on Mental Health

Breaking Down the Quantum W State: New Insights from Recent Measurements

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.