• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers discover potential new therapeutic target for Alzheimer’s disease

Bioengineer by Bioengineer
June 12, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An antagonist that blocks specific interaction between the protein apoE and amyloid precursor protein appears promising in a University of South Florida-led preclinical study

IMAGE

Credit: © University of South Florida

TAMPA, Fla. (June 12, 2019) — Apolipoproten E (apoeE) is a major genetic risk factor for the development of Alzheimer’s disease, yet the protein tends to be understudied as a potential druggable target for the mind-robbing neurodegenerative disease.

Now a research team led by the University of South Florida Health (USF Health) Morsani College of Medicine reports that a novel apoE antagonist blocks apoE interaction with N-terminal amyloid precursor protein (APP). Moreover, this peptide antagonist, known as 6KApoEp, was shown to reduce Alzheimer’s-associated beta amyloid (β-amyloid) accumulation and tau pathologies in the brain, as well as improving learning and memory in mice genetically engineered to mimic symptoms of Alzheimer’s disease.

Many failed anti-amyloid therapies for Alzheimer’s disease have been directed against various forms of the protein β-amyloid, which ultimately forms clumps of sticky plaques in the brain. The presence of these amyloid plaques is one of the major hallmarks of Alzheimer’s disease.

The USF Health research findings suggests that disrupting apoE physical interaction with N-terminal APP may be a new disease-modifying therapeutic strategy for this most common type of dementia.

The preclinical study was published online May 2 in Biological Psychiatry.

“For the first time, we have direct evidence that the N-terminal section of apoE itself acts as an essential molecule (ligand) to promote the binding of apoeE to the N-terminal region of APP outside the nerve cell,” said the study’s lead author Darrell Sawmiller, PhD, an assistant professor in the USF Health Department of Psychiatry & Behavioral Neurosciences. “This receptor-mediated mechanism plays a role in the development of Alzheimer’s disease. Overstimulation of APP by apoE may be an earlier, upstream event that signals other neurodegenerative processes contributing to the amyloid cascade.”

“Initially we wanted to better understand how apoE pathologically interacts with APP, which leads to the formation of β-amyloid plaques and neuronal loss,” said study senior author Jun Tan, PhD, MD, a professor in the USF Health Department of Psychiatry & Behavioral Neurosciences. “Our work further discovered an apoE derivative that can modulate structural and functional neuropathology in Alzheimer’s disease mouse models.”

###

Alzheimer’s disease is a global epidemic, afflicting an estimated 50 million people worldwide and 5.8 million in the U.S, according to the Alzheimer’s Association. With the aging of the Baby Boomer generation, the prevalence of the debilitating disease is expected to increase dramatically in the coming years. Currently, no treatments exist to prevent, reverse or halt the progression of Alzheimer’s disease, and current medications may only relieve dementia symptoms for a short time.

Dr. Sawmiller, Ahsan Habib, PhD, and Lucy (Hauyan) Hou, MD, of the USF Health Department of Psychiatry and Behavioral Neurosciences (all lead authors) collaborated with colleagues from the Laboratory of Neurosciences at the National Institute on Aging (NIA), the Department of Neuroscience at Johns Hopkins University School of Medicine, the USF Center for Neurosurgery and Brain Repair, and Saitama Medical University in Japan. Other study authors included Takashi Mori, PhD; Anran Fan, PhD; Jun Tian, BS; Brian Giunta, MD, PhD; Paul R. Sanberg, PhD; and Mark P. Mattson, PhD.

The research was supported by an NIA grant from the National Institutes of Health.

Media Contact
Anne DeLotto Baier
[email protected]

Original Source

https://hscweb3.hsc.usf.edu/blog/2019/06/11/researchers-discover-potential-new-therapeutic-target-for-alzheimers-disease/

Related Journal Article

http://dx.doi.org/10.1016/j.biopsych.2019.04.026

Tags: AlzheimerMedicine/HealthMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

GM-CSF Boosts Thin Endometrium Growth in Mice, Humans

December 30, 2025

Impact of Dominant Follicle Size on IVF Outcomes

December 30, 2025

Self-Regulatory Fatigue Links Insomnia and Sleep Worry

December 30, 2025

SRSF7’s Key Roles and Therapies in Cancer

December 30, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GM-CSF Boosts Thin Endometrium Growth in Mice, Humans

Derazantinib Boosts Gemcitabine by Blocking MUC5AC

Carrying Capacity Alert Index Gauges African Grassland Sustainability

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.