• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How the cell protects itself

Bioengineer by Bioengineer
June 12, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Göttingen discover the mechanism that prevents damage caused by shortened proteins

IMAGE

Credit: Heike Krebber

The cell contains transcripts of the genetic material, which migrate from the cell nucleus to another part of the cell. This movement protects the genetic transcripts from the recruitment of “spliceosomes”. If this protection does not happen, the entire cell is in danger: meaning that cancer and neurodegenerative diseases can develop. Researchers at the University of Göttingen and the University Medicine Centre Göttingen have demonstrated the underlying mechanism in the cell. The results were published in the journal Cell Reports.

Human cells are made up of the following: a cell nucleus, which contains the genetic material in the form of DNA; and the cytoplasm, where proteins are built. In the cell nucleus, the DNA that contains the blueprint for the organism is rewritten into another form, messenger RNA, in order to transport the information so that these instructions can be used for protein production. Separated from the original transcript, the proteins can then be produced in the cytoplasm. The separation is important because the messenger RNA is not immediately usable; rather, a precursor (pre-messenger RNA) has to be produced that still contains areas that have to be removed before the messenger RNA reaches the cytoplasm. If these areas are not removed beforehand, then shortened or dysfunctional proteins are produced, which is dangerous for the cell.

The molecular machinery that cuts these areas out of the messenger RNA are the spliceosomes. They contain proteins and another type of transcripts of the DNA, the snRNA. The snRNA is not translated into proteins like messenger RNA, but together with the proteins, forms the molecular machinery: the spliceosome. In human cells, the snRNA of the spliceosomes also moves into the cytoplasm. In other organisms, such as baker’s yeast, which is often used as a model organism in research, scientists had thought that the snRNA of the spliceosomes never left the cell nucleus. The reason for the evolutionary development to export snRNA before incorporation into the spliceosomes of human cells was also a mystery.

“Our experiments show that in fact the snRNA of the spliceosomes also migrates into the cytoplasm in yeast,” said Professor Heike Krebber, Head of the Department of Molecular Genetics at the Institute for Microbiology and Genetics at the University of Göttingen. In a second step, the researchers answered the question as to why the messenger RNA of the spliceosomes actually moves into the cytoplasm. It was unclear because the spliceosomes’ task is to cut out individual RNA regions and this takes place back in the cell nucleus. The team of researchers manipulated the yeast by genetic experiments so that the precursors of snRNA no longer changed in the cytoplasm. The observation: “The spliceosomes attempt to work with the precursors, the unfinished snRNA, and this cannot function as it’s supposed to,” said Krebber. “This is the reason that healthy cells must first send the precursors of messenger RNA out of the cell nucleus immediately after their production: it is to prevent them from being used by the developing spliceosomes. This basic understanding is important in order to identify the underlying cause of the development of diseases.

###

Original Publication: Becker et al. Nuclear Pre-snRNA Export is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Reports (2019). https://doi.org/10.1016/j.celrep.2019.05.031

Contact:

Professor Heike Krebber

University of Göttingen

Department of Molecular Genetics

Institute for Microbiology and Genetics

Grisebachstraße 8, 37077 Göttingen

Tel: +49 (0)551 39-33801

Email: [email protected]

http://www.uni-goettingen.de/en/192168.html

Media Contact
Melissa Sollich
[email protected]

Original Source

https://www.uni-goettingen.de/en/3240.html?id=5482

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2019.05.031

Tags: BiologyBiotechnologyCell BiologyGeneticsMedicine/Healthneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

November 5, 2025

Assessing School Nurse Access and Satisfaction in Spain

November 5, 2025

Linking Glucose Disposal Rate to Diabetes Risk

November 5, 2025

Revolutionizing Cardiology: Immune-Driven Theranostics Innovations

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.