• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New funding boosts URMC biotech start-up for neurological disorders

Bioengineer by Bioengineer
June 10, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oscine Therapeutics, a new biotechnology company based on discoveries made and developed at the University of Rochester Medical Center (URMC) has received a significant multi-year investment to support both research and development of cell-based therapies for neurological disorders. The funding represents the largest-ever investment in a URMC start-up company.

The new venture is based on decades of research in the lab of Steve Goldman, M.D., Ph.D., co-director of the URMC Center for Translational Neuromedicine. Goldman’s work has focused on understanding the basic biology and molecular function of support cells in the central nervous system, devising new techniques to precisely manipulate and sort these cells, and studying how cell replacement could impact the course of neurological diseases.

Goldman has developed techniques to manipulate the chemical signaling of embryonic and induced pluripotent stem cells to create the brain’s support cells, called glia. A subtype of these, called glial progenitor cells, gives rise to the brain’s main support cells, astrocytes and oligodendrocytes, which play important roles in the health and signaling function of nerve cells.

“Neurological disorders are complex diseases, but in many instances it appears that faulty support cells of the brain are driving the disease process,” said Goldman, the URMC Distinguished Professor of Neuroscience and Neurology. “These diseases represent promising targets for cell-replacement therapies because we know a great deal about the role these cells play, how to create them, and how to get them to the areas of the brain where they are needed.”

The investment in Oscine is being made by Sana Biotechnology, a new company focused on creating and delivering engineered cells as medicines for patients. The company is led by a team of biotechnology industry veterans with extensive experience in cell therapy, gene therapy, and gene editing. The company is backed by visionary investors including Arch Venture Partners, Flagship Pioneering, and F-Prime Capital Partners.

In many neurological diseases, such as multiple sclerosis and Huntington’s, glial cells have impaired development and function, or are simply lost during the course of the disease. This results in the disruption of communication between nerve cells, leading to the motor, cognitive, and behavioral symptoms of these disorders.

Goldman’s lab has developed new methods to replace the sick glial cells found in these diseases with healthy ones. In research involving animal models of these diseases, this approach has slowed, and for some disorders even reversed, disease progression.

The new investment – the terms of which were not publicly disclosed – will support R&D by Oscine focused on bringing these cell-based therapies to the clinic. The research will be conducted at URMC under a sponsored research agreement and will support 21 full-time staff, with researchers in Rochester and additional staff in Seattle and New York City. The manufacturing of cells for clinical delivery will use protocols developed at Rochester.

“Cell-based therapies hold significant promise, and while progress has been made in areas such as cancer, there is a significant unmet need in diseases of the central nervous system,” said Christina Trojel-Hansen, Ph.D., the CEO of Oscine, who co-founded the company along with Goldman and spearheaded its organization and fundraising. “The support from Sana will enable us to advance important research in this field and work with an established team that has experience in bringing cell-based therapies through clinical trials and into clinical practice. I am also deeply grateful for the team at the University of Rochester for their efforts to ensure that these important scientific discoveries can now advance toward a clinical application.”

“Our bread and butter at ARCH is in starting companies with top researchers in world-class universities across the globe who are working on transformative discoveries, and pairing those seminal innovations with hard-charging entrepreneurs,” said Paul S. Thurk, managing director with Arch Venture Partners. “We found that golden mix with Dr. Goldman and Dr. Trojel-Hansen at Oscine.”

The University of Rochester and Cornell University have licensed intellectual property to Oscine, and both the University of Rochester and Goldman hold equity stakes in the company. Goldman also serves as Oscine’s President. The negotiation of the license and sponsored research agreement terms was led by Matan Rapoport, Ph.D., M.B.A., senior licensing manager with UR Ventures, the University of Rochester’s technology transfer office.

“This investment underscores the cutting-edge nature of the neurological cell therapy research program at URMC,” said Steve Dewhurst, Ph.D., vice dean for Research at the University of Rochester School of Medicine and Dentistry. “We are excited that the basic science discoveries made here at the Medical Center are the basis for innovative, first-in-class therapies that hold the potential to change the lives of people with these devastating neurodegenerative diseases.”

###

Goldman and the Center for Translational Neuromedicine maintain labs in both Rochester and at the University of Copenhagen in Denmark. Goldman’s research for cell-based therapies has received support from the National Institute of Neurological Disorders and Stroke, the National Institute of Mental Health, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the Lundbeck Foundation, the Novo Nordisk Foundation, CHDI, and NYSTEM.

Media Contact
Mark Michaud
[email protected]
https://www.urmc.rochester.edu/news/story/5551/new-funding-boosts-urmc-biotech-start-up-for-neurological-disorders.aspx

Tags: Medicine/Healthneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Defective Neutrophil Exosomes Trigger Macrophage Activation

September 2, 2025

Proven Techniques for Isolating Mesenchymal Stem Cells

September 2, 2025

Novo Nordisk Foundation Introduces Innovative Funding Model

September 2, 2025

Ciltacabtagene Autoleucel vs. Real-World Therapy in Myeloma

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How CAX1’s N-Terminus Controls Its Activity

Tumor Depth Predicts Cervical Cancer Risk

Defective Neutrophil Exosomes Trigger Macrophage Activation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.