• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery sheds light on synthesis, processing of high-performance solar cells

Bioengineer by Bioengineer
June 6, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Halide perovskite solar cells hold promise as the next generation of solar cell technologies, but while researchers have developed techniques for improving their material characteristics, nobody understood why these techniques worked. New research sheds light on the science behind these engineering solutions and paves the way for developing more efficient halide perovskite solar cells.

“This is about material design,” says Aram Amassian, co-corresponding author of a paper on the work and an associate professor of materials science and engineering at North Carolina State University.

“If you want to intentionally engineer halide perovskite solar cells that have the desirable characteristics you’re looking for, you have to understand not only how the material behaves under different conditions, but why,” Amassian says. “This work gives us a fuller understanding of this class of materials, and that understanding will illuminate our work moving forward.”

Halide perovskites are basically salts, with positively and negatively charged components that come together to form a neutral compound. And they have several characteristics that make them desirable for manufacturing high-efficiency solar cells. They can be dissolved into a liquid and then form high-quality crystals at low temperatures, which is attractive from a manufacturing standpoint. In addition, they are easy to repair and can tolerate defects in the material without seeing a big drop-off in their semiconductor properties.

An international team of researchers delved into a key phenomenon related to halide perovskite solar cell synthesis and processing. It involves the fact that adding cesium and rubidium into the synthesis process of mixed halide perovskite compounds makes the resulting solar cell more chemically homogeneous – which is desirable, since this makes the material’s characteristics more uniform throughout the cell. But until now, no one knew why.

To investigate the issue, the researchers used time-resolved, X-ray diagnostics to capture and track changes in the crystalline compounds formed throughout the synthesis process. The measurements were performed at the Cornell High Energy Synchrotron Source.

“These studies are critical in defining the next steps toward the market readiness of perovskite-based solar cells,” says Stefaan De Wolf, co-corresponding author of the paper and an associate professor of materials science and engineering at the King Abdullah University of Science and Technology (KAUST).

“What we found is that some of the precursors, or ingredients, want to form several compounds other than the one we want, which can cluster key elements irregularly throughout the material,” Amassian says. “That was something we didn’t know before.

“We also found that introducing cesium and rubidium into the process at the same time effectively suppresses the formation of those other compounds, facilitating the formation of the desired, homogeneous halide perovskite compound that is used to make high performance solar cells.”

Next steps for the work include translating these lessons from laboratory-based spin-coating to large area manufacturing platforms which will enable the high throughput fabrication of perovskite solar cells.

The paper, “Multi-Cation Synergy Suppresses Phase Segregation in Mixed-Halide Perovskites,” is published in the journal Joule. First author of the paper is Hoang Dang, a research scientist at NC State. The paper was co-authored by Masoud Ghasemi, a postdoctoral researcher at NC State; Kai Wang, Ming-Chung Tang, Michele De Bastiani, Emilie Dauzon and Dounya Barritt of KAUST; Jun Peng of Australian National University; and Detlef-M. Smilgies of Cornell University. The work was done with support from KAUST and the National Science Foundation, under grants 1332208 and 1542015.

###

Media Contact
Matt Shipman
[email protected]

Related Journal Article

https://news.ncsu.edu/2019/06/synthesis-of-hp-solar-cells/
http://dx.doi.org/10.1016/j.joule.2019.05.016

Tags: Atomic/Molecular/Particle PhysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet7Share2ShareShareShare1

Related Posts

Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025
blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Institutional Factors Impacting Cervical Cancer Guideline Compliance

Bright Hybrid Excitons Boost Scalable X-ray Scintillators

Tau PET Positivity Varies by Age, Genetics, and Sex

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.