• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Snout dated: Slow-evolving elephant shark offers new insights into human physiology

Bioengineer by Bioengineer
June 4, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using different steroid hormones to activate a hormone receptor in a cartilaginous fish provides insights into origins and later evolution of crucial mechanism for survival of vertebrates living on land

IMAGE

Credit: Photo credit: Susumu Hyodo, University of Tokyo

The mineralocortoid receptor (MR) regulates water and sodium transport throughout cells and tissues, which is critical for controlling blood pressure and so, not surprisingly, the MR is common to all vertebrate animals. Aldosterone, which is a physiological steroid for land vertebrate MRs, evolved in lungfish (forerunners of land vertebrates), suggesting that the evolution of aldosterone was important in the conquest of land by preventing dehydration in animals living out of water.

And yet, aldosterone is absent in sharks and ray-finned fish, prompting the question of which steroids activate the MR in them, and the roles played by these steroids in humans.

In an unusual study, an international team of scientists from Japan, Singapore and the United States, led by Michael E. Baker, PhD, research professor at University of California San Diego School of Medicine, report that compared to humans, a different set of steroid hormones activate MR in elephant sharks, a species of cartilaginous fish that represents the oldest surviving group of jawed vertebrates.

The discovery, published in the June 4, 2019 issue of Science Signaling, not only highlights another evolutionary change as vertebrates transitioned from water to land, but suggests that MR may have other, critical roles in maintaining human health.

“Although the MR is traditionally thought of as a transcription factor that’s important in regulating electrolyte transport in kidneys, it is becoming clear that the MR has physiological actions in non-traditional organs, including the brain and heart,” said Baker.

“Our findings suggest that the activity of the MR in non-traditional organs is ancient and, indeed, evolved in a basal jawed vertebrate. Studies with elephant sharks support other research that shows the physiology of steroid hormones like aldosterone, cortisol and progesterone in other non-traditional tissues, such as ovary and testis, also may be important in human health.”

The elephant shark (Callorhinchus milii) is an uncommon animal model. Known by several names, such as ghost shark, elephant fish and silver trumpeter, the species is found in waters off southern Australia. The smooth-skinned fish grow to a maximum size of four feet and pose no threat to humans. Their distinctive hoe-shaped, proboscis-like snout is used to detect prey, primarily shellfish and bottom-dwelling invertebrates, through movement and weak electrical fields.

Elephant sharks possess another unusual feature: They have the slowest evolving genome of all known vertebrates, “which makes them ideal for providing insights into how MR evolved in bony vertebrates, including humans,” said the study’s first author Yoshinao Katsu, PhD, assistant professor of biological science at Hokkaido University in Japan.

Baker, Katsu and colleagues in Singapore, Japan and Minnesota found that elephant shark MR responds to the same physiological corticosteroids (aldosterone, cortisol, corticosterone and 11-deoxycorticosterone) that activate MR in humans and other mammals. But another major steroid hormone — progesterone — triggers shark MR but does nothing in humans, rats, frogs or alligators.

“Because the synthesis of progesterone synthesis is simpler than either aldosterone, cortisol, corticosterone or 11-deoxycorticosterone, we propose that progesterone was an ancestral, maybe the ancestral steroid for MR,” said Katsu.

As such, said the authors, the odd-looking elephant shark and its compact, slow-evolving genome provide a different, comparative way to look at and understand the evolution of humans and other vertebrates at the point when they became terrestrial creatures.

“Elephant shark proteins are a window into the past,” said Baker.

###

Co-authors include: Satomi Kohno, St. Cloud State University, Minn.; Kaori Oka, Xiaozhi Lin and Sumika Otake, Hokkaido University, Japan; Nisha E. Pillai and Byrappa Venkatesh, Institute for Molecular and Cell Biology, Singapore; and Wataru Takai and Susumu Hyodo, University of Tokyo.

Media Contact
Scott LaFee
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/scisignal.aar2668

Tags: Cell BiologyEndocrinologyEvolutionMedicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

August 1, 2025
blank

Developing Neonatal Point-of-Care Ultrasound Programs

August 1, 2025

DCAF13 Crucial for Mouse Uterine Function, Fertility

August 1, 2025

Machine Learning Transforms Immunotherapy in Metastatic NSCLC

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Developing Neonatal Point-of-Care Ultrasound Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.