• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover cells that change their identity during normal development

Bioengineer by Bioengineer
June 4, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UVA

A new study by researchers at the University of Virginia and other institutions has discovered a type of pigment cell in zebrafish that can transform after development into another cell type.

David Parichy, the Pratt-Ivy Foundation Distinguished Professor of Morphogenesis in UVA’s Department of Biology, said that researchers in his lab noticed that some black pigment cells on zebrafish became gray and then eventually white. When they looked closer, they found dramatic changes in gene expression and pigment chemistry.

“We realized that the cells have a secret history hiding in plain sight,” he said. “Zebrafish have been studied closely for more than 30 years – we know a lot about them – but this is the first time this transformation has been noticed. It’s a very surprising discovery.”

The unique cell population sheds the pigment melanin, changing in color from black to white during the life cycle of an individual fish. These special cells are found at the edges of the fins, where they seem to act as a signal to other zebrafish.

The ability of a developed cell to differentiate directly into another type of cell is exceptionally rare. Normally such a change requires experimental intervention, returning the cell to a stem-cell state in a dish, before it can differentiate, or transform, as something else.

The new finding, published recently online in the journal Proceedings of the National Academy of Sciences, suggests that some developed cells might be more amenable to change than generally believed.

“For a long time, the idea in developmental biology has been that once a cell has completed its development, it stays that way,” said Parichy, who led the study. “We are discovering that this is not always the case; that, in fact, there are some rare cell populations that are able to change into something new even after their initial development. The dogma says this isn’t supposed to happen.”

Stem cells develop into one type of cell or another, and then those differentiated cells normally stay that way – a skin cell stays a skin cell, muscle cells stay muscle, and so on. But the newly discovered cells, called melanocytes, which are similar to those of humans, contain melanin initially, then lose it and make a white pigment in its place. These cells block the molecular pathways that otherwise would allow them to make melanin and turn on new genes required for their new appearance.

This ability to change makes the cells a good study model for understanding both how cells differentiate, and how it may be possible to make cells differentiate into something new even while still in the animal.

The discovery, Parichy said, has possible implications for regenerative medicine, where researchers might want to use cells already present to make replacement tissues of various cell types. Such a capability could be useful in treating patients after stroke, spinal cord injury, heart attacks or other trauma.

“Knowing how cells can be made to change their differentiated state is essential to regenerative medicine, so having an example in which a species does this naturally is very valuable,” he said.

Researchers already are using stem cells to create various cell types, from muscle to skin, but perhaps developed cells also could play a role. Parichy hopes that what he and other researchers learn from the highly unusual transformation of these pigment cells will provide greater understanding of the process and, perhaps, how to manipulate it by reprogramming cells.

“If we can understand how cells go from black to white, this has implications for helping us better understand cells more generally,” he said.

The study also showed that zebrafish were able to recognize whether or not these transforming cells were present, and this affected their social interactions. The cells are located at the fin tips, which are flared during social interactions, like “raising a flag.” As such, these black cells that turn to white may affect associations of fish in the wild, with consequences for access to food and mates, as well as avoidance of predators.

Remarkably the authors also found an additional population of white cells in zebrafish, made in a different way, and that different species of the fish had different complements of these populations. Parichy noted that the study “really shows how much you can learn by tackling questions at levels ranging from genes to cells to behavior to evolution.”

###

Media Contact
Fariss Samarrai
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1901021116

Tags: BiochemistryBiologyCell BiologyDevelopmental/Reproductive BiologyEvolutionGeneticsMarine/Freshwater BiologyMedicine/HealthMolecular BiologySocial/Behavioral Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting ADMET Predictions for Key CYP450s

Saliva Exosome Proteins and Lipids Diagnose Esophageal Cancer

Feasibility of Range-Compensated Proton Arc Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.