• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Tuning the topological insulator Sb2Te3: Just add iron

Bioengineer by Bioengineer
June 3, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Iron-doping of the topological insulator Sb2Te3 results in useful electronic and magnetic properties

IMAGE

Credit: FLEET/UOW

Iron-doping of the topological insulator Sb2Te3 results in useful electronic and magnetic properties, quantified in a recent FLEET study at the University of Wollongong.

The researchers studied the magneto-transport properties of an iron-doped topological insulator (Fe-Sb2Te3).

After the material is doped via the addition of iron, its electronic structure changes significantly:

  • multiple response frequencies emerge, in contrast to the single frequency detected for Sb2Te3 in its pure form
  • carrier density and mobility is reduced.

“This improved understanding of the effects of doping on the topological insulator Sb2Te3 are critical to inform future possible use in low-energy electronics,” explains project leader Xiaolin Wang.

BACKGROUND

Topological insulators (TIs) are novel materials that are neither electrical conductors, nor electrical insulators. Instead, a topological insulator is an insulator in its interior, but conducts along its edges (likened to a chocolate block wrapped in aluminium foil).

Topological insulators’ unique ‘Dirac’ surface states are attractive for electronic applications and potentially host a range of fascinating and useful phenomena.

In three-dimensional (3D) topological insulators such as Sb2Te3, the surface electronic structure is entangled with the internal (bulk) electronic structure and, consequently, both aspects need to be understood at the fundamental level.

Unresolved questions concerning the effect of metal doping of Sb2Te3 is related to one of the most fascinating transport properties in topological insulators: the quantum anomalous Hall effect (QAHE).

QAHE describes an effect that was once ‘unexpected’ (ie, ‘anomalous’): quantisation of the transverse ‘Hall’ resistance, accompanied by a considerable drop in longitudinal resistance.

It’s an area of great interest for technologists,” explains Xiaolin Wang. “They are interested in using this significant reduction in resistance to significantly reduce the power consumption in electronic devices.”

The study of magnetic-doped topological insulators seeks to find the optimal set of dopants, magnetic order, and transport properties in order to:

  • Achieve a higher (near ambient) QAHE onset temperature
  • Eliminate unwanted features in the electronic structure introduced by the transition-metal dopant that are detrimental to performance.

THE STUDY

The study Quantum oscillations in iron-doped single crystals of the topological insulator Sb2Te3 was published in Physical Review B in April this year.

This project was led by Prof Xiaolin Wang, who is the theme Leader of ARC Fleet Enabling technology A and the Director of ISEM at the University of Wollongong.

As well as funding by the Australian Research Council, the research benefited from resources of Australia’s National Computational Infrastructure (NCI).

NOVEL MATERIALS AT FLEET

The properties of novel materials such as the topological insulator Sb2Te3 are studied at FLEET, an Australian Research Council Centre of Excellence, within the Centre’s Enabling technology A.

The Centre for Future Low-Energy Electronics Technologies (FLEET) is a collaboration of over a hundred researchers, seeking to develop ultra-low energy electronics to face the challenge of energy use in computation, which already consumes 8% of global electricity, and is doubling each decade.

###

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/tuning-the-topological-insulator-sb2te3-just-add-iron/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.99.165133

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Institutional Factors Impacting Cervical Cancer Guideline Compliance

Bright Hybrid Excitons Boost Scalable X-ray Scintillators

Tau PET Positivity Varies by Age, Genetics, and Sex

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.