• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Targeting inflammation to better understand dangerous blood clots

Bioengineer by Bioengineer
May 28, 2019
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It’s the third deadliest cardiovascular diagnosis, but doctors are still often stumped to explain why 40% of patients experience unprovoked venous thromboembolism (VTE). And after a patient has dealt with these dangerous blood clots once, a second and subsequent events become much more likely.

New research from a team of University of Michigan scientists may help solve the mystery of how to detect and deal with higher-than-usual clot risk in patients’ veins. The study, done in mice and published in the Journal of Clinical Investigation, focuses on clots’ relationship to the body’s defense and repair system, which causes inflammation.

“We don’t yet understand the molecular triggers which drive the development of life-threatening clots in deep veins,” said Yogen Kanthi, M.D., the study’s senior author and a vascular cardiologist at U-M’s Frankel Cardiovascular Center. “Our work aimed to identify and block a previously unrecognized pathway linking inflammation and thrombosis.”

Kanthi, also an assistant professor of internal medicine at Michigan Medicine, says VTE is triggered by some combination of coagulation and inflammation. But current treatments come up short, he says, because they only focus on one side of the equation: anticoagulation. After VTE, patients are often prescribed blood thinners for life.

Kanthi’s lab is instead investigating inflammation’s role in the development of deep vein thrombosis. His team’s new study found an enzyme called CD39 diffused circulating “danger” signals and inflammatory cytokines in blood during thrombosis.

FDA-approved drugs already exist for other conditions that are affected by the same pathway, and in particular, the paradigmatic inflammatory cytokine molecule called interleukin-1 beta. In fact, when the researchers inhibited interleukin-1 signals in their study, they reduced the number and size of venous blood clots the animals formed, Kanthi said.

“Here, we focused on potential therapeutics at the intersection of inflammation and thrombosis,” Kanthi said. “We showed that blocking interleukin 1 beta, a ubiquitous inflammatory molecule, was a powerful means to stop clot formation.”

###

Earlier this year, Kanthi and colleagues published a paper in Arteriosclerosis, Thrombosis, and Vascular Biology that identified CD39 as important to the venous thromboinflammatory response.

For updates on this and other research out of the Kanthi Lab, follow Kanthi on Twitter @YogenKanthi.

Additional authors, all from the University of Michigan, include co-first authors Vinita Yadav and Liguo Chi, Raymond Zhao, Benjamin Tourdot, Srilakshmi Yalavarthi, Benjamin N. Jacobs, Alison Banka, Hui Liao, Sharon Koonse, Anuli C. Anyanwu, Scott Visovatti, Michael Holinstat, J. Michelle Kahlenberg, Jason S. Knight and David J. Pinsky.

Media Contact
Haley Otman
[email protected]
http://dx.doi.org/10.1172/JCI124804

Tags: CardiologyMedicine/HealthStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025
Theta Stimulation Boosts Conflict Resolution in Parkinson’s

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025

Distinct Nigral and Cortical Pathways in Parkinson’s Model

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    47 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ancient Texts Decoded by Neural Networks

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Biodegradable, Mass-Produced Tungsten-PBAT Conductive Fiber

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.