• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, February 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Of strawberry jelly and earthquakes: Space station investigation studies colloids

Bioengineer by Bioengineer
May 23, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new International Space Station investigation, Advanced Colloids Experiment-Temperature-10, is using temperature changes to better understand how colloids — or ‘disordered solids’ — age or fail

IMAGE

Credit: NASA

If you think your strawberry jelly is unrelated to earthquakes, think again.

A new International Space Station investigation, Advanced Colloids Experiment-Temperature-10 (ACE-T-10), is using temperature changes to better understand how colloids – or ‘disordered solids’ – age or fail. Understanding this stress relaxation in disordered solids may provide hints about seismic events on earth. This experiment could also benefit the future exploration of the Moon, Mars and beyond by providing insight into material failure.

Colloids are materials where nanoparticles or small droplets of one material are dispersed in a fluid. These soft materials are common in daily life; examples are whipped cream, jelly, fabric softener, milk and muddy water.

ACE-T-10 studies colloids in which the attraction between nanoparticles gets stronger with increased temperature. While at room temperature, the colloid behaves as a liquid. When the suspension is heated to above approximately 40°C, the particles rapidly stick to each other, forming a rigid network that can sustain its own weight – a process called gelation.

This is similar to what happens in the tempering of glass. However, fast gelation produces stresses in the material that progressively relax through a cascade of restructuring events akin to ‘micro-quakes.’ The aftershocks eventually induce larger restructuring events involving the entire gel. These dramatic upheavals of the gel structure can be predicted, at least statistically, because they are heralded by an observable ‘jittery’ stage. ACE-T-10 confocal microscopy images enabled by the space station may allow scientists to highlight the rupture of these microscopic gel strands that is anticipated to lie beneath these curious tremors.

“Temperature plays a dual role in this,” said Primary Investigator Roberto Piazza. “It is the factor that changes the interactions between the particles, making them stick together; at the same time, it is the driving force that promotes the gel’s spontaneous restructuring. On Earth, however, gravity acts as an additional stress on the material that can influence the way the gel restructures. Experiments in microgravity are mandatory to quantify whether gravity (gel weight) plays a relevant role or not.”

The space station’s laboratory provides other benefits as well. “The space station’s Light Microscopy Module (LMM) in the Fluids Integrated Rack allows scientists to control the temperature of the system and provides a 3D structure of the material,” said Stefano Buzzaccaro, co-investigator for ACE-T-10. “In collaboration with the European Space Agency (ESA), we are developing a light scattering setup that, in combination with the confocal LMM, gives us everything we need to try to understand the problem of gelation.”

Similar to colloids, the Earth’s crust also releases stress through earthquakes. ACE-T-10 could provide insight into the events that anticipate these quakes, allowing scientists to provide better forecasts of when they might happen.

It can also contribute to predictions related to product shelf life and the failure of structural materials in roads and bridges.

“This is especially important when you are on Mars and you have to construct materials using Martian crust,” said Buzzaccaro. “You can find a method to monitor the damage of the material you use and forecast its failure.”

Food for thought when you make your next colloid and peanut butter sandwich.

###

Media Contact
Carrie Gilder
[email protected]

Original Source

http://www.nasa.gov/mission_pages/station/research/news/strawberry-jelly-earthquakes-colloids-in-space

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesGeophysicsGeophysics/GravityParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Shrinking Shellfish: FAU Study Reveals Acidic Water Threats in Indian River Lagoon

Shrinking Shellfish: FAU Study Reveals Acidic Water Threats in Indian River Lagoon

February 3, 2026
blank

Oxygen-Enhanced Graphene Filters Revolutionize Natural Gas Purification

February 3, 2026

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

February 3, 2026

Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

February 2, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    158 shares
    Share 63 Tweet 40
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Therapies for Young Women’s ER-Positive Breast Cancer

Shrinking Shellfish: FAU Study Reveals Acidic Water Threats in Indian River Lagoon

Dr. Barron Bichon Appointed Vice President of SwRI’s Mechanical Engineering Division

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.