• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

What are the neurological side effects of CAR T-cell therapy?

Bioengineer by Bioengineer
May 19, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers report complex neural toxicities observed after CAR-T treatment for blood cancers

The recent advent of chimeric antigen receptor (CAR) T-cell therapy has revolutionized the clinical treatment of cancer. Under the umbrella of immunotherapy, CAR T-cell treatment trains and strengthens a patient’s own immune system to attack tumors. Early successes in clinical trials have led to approval of the treatment for recurrent blood cancers, including leukemia and lymphoma.

Despite the therapeutic successes of CAR T-cell therapy, the intervention carries the risk of severe side effects. These include neurotoxicity, which can result in headache, confusion, and delirium, among other neural changes. These debilitating effects remain poorly understood and characterized. A team at Brigham and Women’s Hospital recently cataloged the neurological symptoms of patients who had received CAR T-cell therapy to better understand its neurotoxic side effects. While neurological symptoms were prevalent — 77 percent of patients experienced at least one symptom — they were also temporary. The findings are published in Brain.

“The mechanism underlying CAR T-cell-associated neurotoxicity is unknown and symptoms can be very hard to predict,” said lead author Daniel Rubin, MD, PhD, of the Department of Neurology at the Brigham. “We conducted this study to better define the specific neurologic symptoms experienced by patients after CAR T-cell therapy.”

To define clinical symptoms of CAR-T-associated neurotoxicity, the team conducted an observational cohort study of 100 lymphoma patients admitted to the Dana-Farber/Brigham and Women’s Cancer Center for CAR T-cell therapy between 2015 and 2018. The team evaluated symptoms from the start of CAR T-cell therapy infusion through two months’ post-infusion. In addition, all diagnostic assessments, including laboratory tests and imaging scans, were reviewed.

“We shared a few clinical cases early in the therapies which were very severe and unusual from a neurological standpoint,” said senior author Henrikas Vaitkevicius, MD, of the Department of Neurology. “This sparked an interest to collaborate with oncology and T-cell therapy groups, and allowed us to evaluate the majority of patients prospectively rather than retrospectively.”

Their findings reveal the widespread prevalence of neurological symptoms after starting CAR-T therapy. The most prevalent symptom was encephalopathy, a type of brain disease that causes confusion, but additional symptoms such as headache, tremor, weakness and language dysfunction were also observed. Importantly, most of these effects were reversible, and symptoms almost always resolved over time.

In addition, the researchers observed a unique pattern of activity, or inactivity, in their study. The neurological deficits associated with therapy often originated from areas which appeared metabolically silent. This finding carries important implications for the clinical assessment of neurotoxicity and the use of imaging.

“Despite the common occurrence of neurologic symptoms, imaging studies such as MRI, which serve as a cornerstone of neurologic diagnosis, were almost always normal,” remarked Rubin. “In contrast, diagnostic studies that more directly evaluated neuronal functioning, like EEG and PET scan, could reliably detect and predict neurologic dysfunction.”

As a next step, investigators are building and validating a model for more accurate scoring and diagnosis of CAR T-associated neurotoxicity.

###

No funding was received towards this work. Co-authors report consulting for Kite, Novartis, Precision Biosciences, Humanigen, Pfizer, Bayer, and Celgene.

Paper cited: Rubin D et al. “Neurological toxicities associated with chimeric antigen receptor T-cell therapy” Brain DOI: 10.1093/brain/awz053

Media Contact
Haley Bridger
[email protected]
http://dx.doi.org/10.1093/brain/awz053

Tags: cancerMedicine/Healthneurobiology
Share14Tweet8Share2ShareShareShare2

Related Posts

MR Urography Assesses Pediatric UPJ Obstruction Treatment

November 10, 2025

IL-6’s Role in Nasopharyngeal Carcinoma Progression

November 10, 2025

miR-770-5p Regulates KLF4/EGFR via PRMT5

November 10, 2025

BM-MSC Exosomes Modulate TUG1, Fight Leukemia

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Switching Treprostinil Formulations: Key Evidence and Approaches

Blueprint Reveals Environmental Consequences of AI Data Center Expansion

Rapid Dopamine Changes Don’t Drive Action Vigor

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.