• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers find protein that suppresses muscle repair in mice

Bioengineer by Bioengineer
May 6, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Researchers report that a protein known to be important to protein synthesis also influences muscle regeneration and regrowth in an unexpected manner. The discovery, reported in the Journal of Clinical Investigation, could one day lead to new methods for treating disorders that result in muscle weakness and loss of muscle mass, the researchers said.

Scientists have long studied leucine tRNA-synthetases, or LRS, for its role in protein synthesis, said University of Illinois cell and developmental biology professor Jie Chen, who led the research.

“In the last 5-10 years, scientists have begun to realize that LRS and other proteins like it have functions independent of protein synthesis,” Chen said. “Previously, my lab and other labs discovered that one of such functions of LRS is that it can regulate cell growth. Our new study is the first report of its function in muscle regeneration.”

Chen and her colleagues used mammalian cell cultures and mice in the new study. They compared the speed of muscle repair in mice with normal and lower-than-normal LRS levels. They discovered that mice with lower levels of LRS in their tissues recovered from muscle injury much more quickly than their counterparts with normal LRS levels.

A 70% reduction of LRS proteins in the cell does not affect protein synthesis, Chen said.

“But lower levels do positively influence muscle regeneration,” she said. “We saw that, seven days after injury, the repaired muscle cells are bigger when LRS is lower.”

While it is not possible to lower LRS in human subjects, the researchers sought another method to block its effects.

Chen and her colleagues further unraveled the exact molecular mechanism by which LRS influences muscle regeneration. This led them to hypothesize that a nontoxic inhibitor that their collaborators in South Korea previously developed would block the effect of LRS on muscle cells without interfering with its role in protein synthesis.

“We showed that this inhibitor works both in mammalian cells and in mice,” Chen said. Muscle repair occurred more rapidly – and the regenerated muscles were stronger – when the inhibitor was present.

As the science progresses, researchers are gaining greater insights into the multifunctionality of proteins once thought to have only a single role in cells, Chen said.

“We now understand that ‘protein moonlighting,’ where one protein does many different things in the cell, is the norm,” she said.

Chen and her colleagues are investigating the effect of LRS on older mice, which tend to rebuild their muscles more slowly and have less muscle tone than younger mice.

###

The National Institutes of Health and the Keck Foundation supported this research.

Editor’s notes:

To reach Jie Chen, call 217-265-0674; email [email protected].

The paper “Nontranslational function of leucyl-tRNA synthetase regulates myogenic differentiation and skeletal muscle regeneration” is available online and from the U. of I. News Bureau.

Media Contact
Ananya Sen
[email protected]

Original Source

https://news.illinois.edu/view/6367/783867

Related Journal Article

http://dx.doi.org/10.1172/JCI122560

Tags: Medicine/HealthMusculaturePhysiologyRehabilitation/Prosthetics/Plastic SurgerySports Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Custom Phage Cocktail Targets Enterobacter cloacae Infections

September 24, 2025
blank

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

September 24, 2025

Celebrating 100 Years Since the Birth of IVF Pioneer Sir Robert Edwards

September 24, 2025

How Different ALK Fusion Variants Impact Lung Cancer Treatment Success

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Most Older Adults Benefit from Partnering on Health Care Visits, Poll Reveals

Portable, Scalable Genomic Pipeline Advances Pneumococcal Surveillance

Custom Phage Cocktail Targets Enterobacter cloacae Infections

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.