• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Building better life support systems for future space travel

Bioengineer by Bioengineer
May 2, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new investigation aboard the International Space Station tests using the microalgae Chlorella vulgaris as a biological component of a hybrid life support system (LSS)

IMAGE

Credit: Institute of Space Systems – University of Stuttgart, Germany

Astronauts on future long-duration spaceflight missions to the Moon and Mars could rely on microalgae to supply essentials including food, water and oxygen. A new investigation aboard the International Space Station tests using the microalgae Chlorella vulgaris as a biological component of a hybrid life support system (LSS).

As humans travel farther from Earth and for longer periods of time, bringing along sufficient supplies of food, water and oxygen becomes a challenge. Packing food that is nutritious and perhaps even tasty may prove harder still.

Current life support systems, such as the Life Support Rack (LSR), use physicochemical processes and chemical reactions to generate oxygen and water and remove carbon dioxide from the space station.

The Photobioreactor (PBR) investigation demonstrates creating a hybrid LSS by adding the biological processes of a microalgae, which has a photosynthetic efficiency up to ten times greater than more complex plants. These tiny plants could take concentrated carbon dioxide removed from the cabin atmosphere and use photosynthesis to produce oxygen and possibly even food for astronauts, according to Norbert Henn, a co-investigator and consultant at the Institute of Space Systems at University of Stuttgart.

The Institute of Space Systems began research on microalgae for space applications back in 2008 and started work on Photobioreactor in 2014, together with the German Aerospace Center (DLR) and Airbus.

“The use of biological systems in general gains importance for missions as the duration and the distance from Earth increase. To further reduce the dependency on resupply from Earth, as many resources as possible should be recycled on board,” said co-investigator Gisela Detrell.

Astronauts activate the system hardware aboard the space station and let the microalgae grow for 180 days. That span of time allows researchers to evaluate the stability and long-term performance of the Photobioreactor in space, as well as the growth behavior of the microalgae and its ability to recycle carbon dioxide and release oxygen, according to co-investigator Jochen Keppler. Investigators plan to analyze samples back on Earth to determine the effects of microgravity and space radiation on the microalgae cells.

“This is the first data from a flight-proven, long-term operation of a biological LSS component,” said Keppler. The algae’s resilience to space conditions has been widely demonstrated in small-scale cell culture, but this will be the first investigation to cultivate it in a PBR in space.

Chlorella, one of the most studied and widely characterized algae worldwide, is used in biofuels, animal feed, aquaculture, human nutrition, wastewater treatment and bio-fertilizer in agriculture.

“Chlorella biomass is a common food supplement and can contribute to a balanced diet thanks to its high content of protein, unsaturated fatty acids, and various vitamins, including B12,” said co-investigator and biotechnologist Harald Helisch at the Institute of Space Systems. As for the taste, he adds, “if you like sushi, you will love it.”

The long-term goal is to facilitate longer space missions by reducing total system mass and resupply dependency, said co-investigator Johannes Martin. “To achieve this, future areas of focus include downstream processing of the algae into edible food and scaling up the system to supply one astronaut with oxygen. We’ll also be working on interconnections with other subsystems of the LSS, such as the waste water treatment system, and transfer and adaption of the technology to a gravity-based system such as a lunar base.”

Astronauts still may have to pack their own wasabi.

###

Media Contact
Rachel Barry
[email protected]

Original Source

https://www.nasa.gov/mission_pages/station/research/news/photobioreactor-better-life-support

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyEcology/EnvironmentPlant SciencesSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Tryptophan Detection in Milk via Enzyme Sensor

January 14, 2026
Structural and Functional Differences in Citrus PRR and R Genes

Structural and Functional Differences in Citrus PRR and R Genes

January 14, 2026

Gut Microbiota l-Theanine Boosts Amino Acid Breakdown

January 14, 2026

Accelerated Donkey Breed Classification via SNP Insights

January 14, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    74 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multi-Omics Reveal Personalized Prognosis in Thyroid Cancer

SOHLH2-RAD54L Axis Drives Radioresistance in Lung Cancer

First Direct Detection of Migdal Effect

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.