• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study reveals factors behind embryonic stem cell state

Bioengineer by Bioengineer
April 17, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Monash University

Embryonic stem cells (ESC) have the ability to self-renew, and, being pluripotent have the potential to create almost any cell type in the body. The embryonic stem cell state is established and maintained by multiple regulatory networks that include epigenetic regulators; the function of these epigenetic regulators though has not been well-defined.

An international collaboration led by Monash Biomedicine Discovery Institute (BDI) scientists has found for the first time that two new epigenetic regulators, TAF5L and TAF6L, maintain self-renewal of embryonic stem cells. The scientists also found that these proteins activate c-Myc (a well-known cancer gene), and its regulatory network.

Their findings were published in Molecular Cell today.

Monash BDI’s Dr Partha Pratim Das said TAF5L and TAF6L were discovered in a CRISPR-Cas9 loss-of-function genetic screen aimed at finding epigenetic regulators from among 323 epigenetic genes and at establishing how these controlled the embryonic stem cell state.

“It has been known that these factors existed, but for the first time we showed what they do and how they control gene expression,” Dr Das said. “Their function was not known before,” he said.

“From our study we can show the exact mechanism and how these epigenetic regulators control gene expression.”

“The two main things we found were that TAF5L and TAF6L transcriptionally activate the oncogene c-Myc, and also regulate OCT4 that is the master regulator of the embryonic stem cells.”

“We found that the MYC regulatory network is predominantly controlled by them by which they maintain the self-renewal aspect of the embryonic stem cell state.”

The findings would potentially make TAF5L and TAF6L very significant not only in the regenerative biology field but also in cancer research, he said.

Dr Das said TAF5L and TAF6L also play a crucial role in induced pluripotent stem cells (iPSCs), a type of pluripotent stem cell that can be generated from adult somatic cells.

The scientists are further investigating whether TAF5L and TAF6L are linked to various types of cancer and whether they play an important role in neurodevelopment, testing this in mouse and human brain organoids.

Instrumental in the study were Professor Stuart Orkin (Howard Hughes Medical Institute) and Dr Davide Seruggia (Dana Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School), and the Monash BDI’s Dr Pratibha Tripathi, Dr Martin Oti and Michael Bullen.

This research was supported by the National Health and Medical Research Council of Australia (NHMRC).

Read the full paper in Molecular Cell titled TAF5L and TAF6L maintain self-renewal of embryonic stem cells via the MYC regulatory network.

###

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media Contact
Grace Williams
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2019.03.025

Tags: Developmental/Reproductive BiologyMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

How ‘Care Groups’ Boost Women’s Attendance at Prenatal Visits

How ‘Care Groups’ Boost Women’s Attendance at Prenatal Visits

July 31, 2025
blank

Health Risks and Genetics of Multidimensional Sleep

July 31, 2025

IL-33 Activates Basophil Inflammasome Triggering Eczema

July 31, 2025

Enhancing Human Memory, Movement, and Overall Quality of Life

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Safeguarding Your Heart: Essential Insights for Heart Health

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.