• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

In lung disease, crackling and wheezing can be more than just a sign of sickness

Bioengineer by Bioengineer
April 15, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR–Doctors know they’re the sounds of lung problems, but it turns out they might be more than symptoms–crackling and wheezing could be the sounds of a disease progressing, a University of Michigan researcher has found.

James Grotberg, professor of biomedical engineering at the College of Engineering and professor of surgery at the Medical School, recently published a study describing how the mechanics that produce those noises with every breath are likely a cause of injury and inflammation. His conclusion is based on evidence from experiments on microfluidic chips and on animal models. Exploring this in humans is a research goal.

The findings could eventually change how lung diseases are treated, he says. And they represent a paradigm shift for how doctors understand what they hear through a stethoscope. He answered some questions about the research.

When doctors pull out a stethoscope, what are they listening for?

Grotberg: Two important organs being monitored are the heart and the lungs. For the lungs, typically the patient is asked to breathe in and out deeply. There are normal sounds of air movement, but also there can be abnormal sounds, like wheezes during expiration (breathing out) and crackles during inspiration (breathing in). Both are well-known signs of disease.

These wheezes and crackles are signs of what diseases?

Grotberg: Typically, wheezing is found in asthma and emphysema. Patients who wheeze can be so loud you can hear it standing next to them. Crackles, on the other hand, are only heard by a stethoscope and are a sign of too much fluid in the lung. Pulmonary edema is a common example, often a byproduct of heart failure.

You’ve found that sounds could represent more than just the presence of a disease. Can you explain?

Grotberg: Well, for a sound to be created, a mechanical event must occur, like clapping your hands. If you clap hard enough, your hands will hurt. Ouch!

As an extreme example, the loudest sound a lung generates is a severe cough, which can cause, in rare instances, a pneumothorax (ruptured lung), i.e. tissue failure.

The physical mechanisms that cause wheezing and crackling, while smaller forces than a cough, are similar. They make the sound, and that mechanical event is also pounding away on the lung tissue. The lung cells don’t like that. Ouch again!

The cells respond with inflammation, which, itself, is a disease. So wheezes and crackles actually “cause” disease. We’ve seen evidence of this in our experiments.

That is a 180-degree thought reversal from interpreting them as only a “sign” of disease.

Break this down for us a bit more. What exactly is happening when a sick patient wheezes as they exhale?

Grotberg: Wheezing is very much like the sound from a deflating balloon when you make it squeal by stretching the outlet. An asthmatic lung airway is similar because it is constricted to a small narrow passageway. The pitch you hear is the frequency of oscillation of the balloon material, which for a lung would be the airway tube made of cells.

And how is that damaging?

Grotberg: Vibrating the lung cells makes them promote inflammation which damages the lung. Asthma already involves inflammation of the airway tubes in the lung, so wheezing likely just makes things worse.

And what’s going on when patients inhale and produce a crackling sound?

Grotberg: Crackles are ruptures of liquid plugs in the smaller airway tubes that pop open during inspiration. The sound mechanism is very similar to drinking through a straw when you get down to the last sips at the bottom of the cup. The gurgling is a mixture of liquid and air with popping bubbles, just like a fluid-overloaded lung.

The sequence is very damaging to the cells, and again they respond with inflammation and injury.

How do you see this new understanding impacting diagnoses or treatments?

Grotberg: Well, this is completely new territory. Since no one has ever viewed lung sounds as a cause of disease, they have not been investigating it. It’s a paradigm shift for a field that has a 200-year history with the stethoscope.

Experimental models need to be designed to include measurement of injury, from cellular to whole organ level, along with measurement of sound. Our research group in collaboration with Shuichi Takayama, a former U-M professor of biomedical engineering now at Georgia Tech, has done that for crackles in microfluidic platforms, but that is just a beginning.

If lung crackle injury is found in congestive heart failure, therapy would likely change to treat both at the same time, perhaps adding an anti-inflammatory agent. Wheezing is often already treated with anti-inflammatory agents, but not always.

In any case, the goal of stopping the sounds by more aggressive treatment may evolve.

###

Grotberg’s study is published online in Annals of the American Thoracic Society. It will be printed in a forthcoming issue.

Study: Crackles and Wheezes: Agents of Injury?

James Grotberg

Biofluids Mechanics Research Laboratory

Media Contact
Nicole Casal Moore

[email protected]
734-647-7087

Tags: Medicine/HealthPulmonary/Respiratory MedicineTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

August 21, 2025
Proximity Screening Boosts Graphene’s Electronic Quality

Proximity Screening Boosts Graphene’s Electronic Quality

August 21, 2025

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

August 21, 2025

TCF1 and LEF1 Sustain B-1a Cell Function

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Noncommutative Metasurfaces: Pioneering New Frontiers in Quantum Entanglement

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

Proximity Screening Boosts Graphene’s Electronic Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.