• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Precise decoding of breast cancer cells creates new option for treatment

Bioengineer by Bioengineer
April 15, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Johanna Wagner / UZH)

Every year more than 1.7 million women all over the world are diagnosed with breast cancer, with the disease ending fatally for around half a million patients. In the fight against breast cancer, research is being done into novel therapeutic approaches that are designed to target cancer cells more precisely and also activate the tumor-associated immune system. So far, however, little has been known about the different cancer and immune cells present within a tumor, and how they differ from patient to patient.

Mass cytometry unravels diversity of cells

Johanna Wagner of the University of Zurich joined forces with Marianna Rapsomaniki of IBM Research in Rüschlikon and the Patients’ Tumor Bank of Hope to use mass cytometry to exam-ine several million cancer and immune cells from 140 patients, as the basis for creating an atlas of tumor and immune cells. “Using this technology we were able to examine the diversity of can-cer cells very precisely and describe how many different types of cancer cells are present in a tumor,” explains Wagner, who’s working on her PhD under the supervision of Bernd Bodenmiller, professor at the new Department of Quantitative Biomedicine, whose group specializes in the precision medicine analysis of tissues.

In parallel to this they also analyzed the immune system’s tumor-associated macrophages and T-cells, which could attack the tumor – but also support it. If the activated immune system launches a successful attack, the breast cancer cells are destroyed. But if the nearby immune cells are inactivated, the breast cancer cells survive the attack.

Every tumor is unique in terms of its cellular composition

The researchers discovered that the previous assumption that a greater diversity of tumor cells was present in more aggressive tumors was false. More aggressive tumors are in most cases dominated by one single type of tumor cell, which often displays a high degree of abnormality. “Every tumor we looked at was unique in terms of its cellular composition, which varied from pa-tient to patient. This could be one of the reasons why we’re having such difficulty treating breast cancer,” says Wagner.

Breast cancer patients could benefit from immune therapy

At the same time, the scientists discovered similarities in the tumor-associated immune system between the aggressive tumors. Among one group of breast cancer patients they found an ac-cumulation of inactive immune cells that are successfully activated by immune therapy to fight lung and skin cancer. This included patients who previously weren’t considered suitable candi-dates for immune therapy to treat breast cancer.

A comprehensive analysis of a tumor’s entire cancer and immune cells could thus be a good basis for therapies in precision medicine. “Our findings suggest that immune therapy might pos-sibly work for breast cancer. We’ll be doing further studies on this, and if they’re successful will extend them into a clinical trial,” explains Professor Bodenmiller.

###

Media Contact
Bernd Bodenmiller
[email protected]

Original Source

https://www.media.uzh.ch/en/Press-Releases/2019/Breast-Cancer.html

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2019.03.005

Tags: Breast CancercancerCarcinogensCell BiologyDiagnosticsImmunology/Allergies/AsthmaMedicine/HealthMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

Needle-Free Vaccine Delivery Achieved in Mice Through Skin Stretching Technique

September 17, 2025

High-Density Soft Biofibers Enable Advanced Sensing

September 17, 2025

Revolutionary Microscope Snaps High-Resolution, Wide-Angle Images of Curved Samples in a Single Shot

September 17, 2025

New PfDHFR-TS Inhibitors Discovered from Natural Compounds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Organic Solar Cells with Polymer Zwitterion-Modified Metal Oxides

Reindeer Grazing Helps Reduce Forest Carbon Emissions Amid Winter Climate Change

Needle-Free Vaccine Delivery Achieved in Mice Through Skin Stretching Technique

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.