• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Army scientists lead the way to produce tools for engineering biomolecules

Bioengineer by Bioengineer
April 15, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of Autumn Kulaga, CCDC Army Research Laboratory

Army scientists have discovered how to build novel synthetic biomolecule complexes that they believe are a critical step towards biotemplated advanced materials. Their work was recently featured in the March issue of Nature Chemistry.

A team of researchers from the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, the Army’s corporate research laboratory also known as ARL, and The University of Texas at Austin’s Department of Molecular Biosciences, combined pairs of oppositely charged synthetic proteins to form hierarchical ordered, symmetrical structures through a strategy they termed as “supercharged protein assembly.”

Dr. Jimmy Gollihar, a synthetic biology research scientist at ARL, along with University of Texas at Austin professors, Drs. Andrew Ellington and David W. Taylor, Jr., collaborated on this discovery.

The researchers said synthetic protein units had their surface charge artificially augmented to create either a positively or negatively charged protein unit to create supercharged proteins. This feature allowed the team to create self-assembled structures that are driven by charge alone.

As a demonstration of this capability, the team used computational modeling to design two fluorescent proteins, one super positive and the other super negative.

Gollihar explained that when the team synthesized and mixed the oppositely supercharged fluorescent proteins, it resulted in well-ordered aggregates.

“Our simple charged proteins assembled into well-ordered structures in a manner that has not been observed in nature,” Gollihar said. “These protomers are aggregates of two oppositely charged pairs of fluorescent proteins. Once the protomers form, they can be reversibly assembled by altering the ionic strength or pH of the solution. At very low ionic strength, the proteins assemble into structures that are larger than bacterial cells.”

Gollihar indicated this begins to address questions on how protein structures can be engineered into templates for advanced materials.

“Biology is exceptional at Angstrom-level scales that current manufacturing methods cannot access,” he said. “By studying the self-assembly and functionalization at this level, it should prove possible to manufacture nanoscale materials for a host of Army-relevant applications.

He said synthetic biology is a key technology area that has disruptive potential to shape how the Army will fight and win in the future operational environment.

“These efforts will be followed by attempts to engineer protein structures with unique properties suitable for Army applications such as bio-enabled sensing and functional coatings,” Gollihar said. “The ready assembly of this structure suggests that combining oppositely supercharged pairs of protein variants may provide broad opportunities for generating novel architectures via otherwise unprogrammed interactions.”

This foundational work will continue, expanding in scale and composition, as part of Transformational Synthetic biology for Military Environments, or TRANSFORME, one of ARL’s essential research programs.

“TRANSFORME is about programmable control of biological processes allowing not only expeditionary capabilities in multi-domain operation, but also adaptation at operational tempo, a pace that can define a country’s dominance in battle,” said Dr. Dimitra Stratis-Cullum, program manager for TRANSFORME.

###

To read the entire study — Supercharging enables organized assembly of synthetic biomolecules — visit Nature Chemistry.

Media Contact
Joyce M. Conant
[email protected]

Original Source

https://www.nature.com/articles/s41557-018-0196-3

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.