• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cell-type specific mechanism for formation and retrieval of cocaine-associated memories

Bioengineer by Bioengineer
April 15, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kanazawa University

[Background]

The environmental context in which addicts experience the rewarding effects of cocaine can readily elicit cocaine-associated memories. These memories persist long after abstinence and trigger cocaine-craving and consumption. Thus, understanding the neuronal mechanisms underlying the formation and retrieval of cocaine-associated memories is critical for developing treatment for cocaine addiction. The medial prefrontal cortex (mPFC), a brain region associated with recognition, working memory and attention, has been suggested to play a critical role in drug addiction. Lesions to the mPFC disrupt cocaine-associated memories; however, it is unclear whether the mPFC is associated with the formation and/or retrieval of cocaine-associated memories. Thus, inactivation of the mPFC at specific times, either during the memory formation or retrieval phase, is necessary to address the distinct roles of the mPFC. Likewise, inactivation of specific mPFC cell types will permit elucidation of the role of discrete neuronal subpopulations (for example, mPFC glutamatergic pyramidal or GABAergic neurons) in the development of cocaine-associated memories. However, because of technical limitations, causal relationships between neuronal activity and memory formation/retrieval remain unclear.

[Results]

The present study was conducted by a collaboration of researchers from Kanazawa, Hokkaido, Okayama, Niigata, Nagoya, Tsukuba, and Kyoto Universities, Japan. The experiments were performed at Kanazawa University.The study employed a cocaine-induced conditioned place preference (CPP) test, a Pavlovian conditioning paradigm, combined with ‘designer receptors exclusively activated by designer drugs’ (DREADD) technology. The CPP test involves administration of cocaine to animals in a specific context; the animals learn to associate the rewarding properties of cocaine with this context, resulting in the formation of cocaine-associated memories. In the test, the animals retrieve the cocaine-associated memory when placed in the cocaine-administered context and exhibit preference for the context. Wild-type C57BL/6J mice received bilateral intra-mPFC infusion of an adeno-associated virus (AAV) expressing inhibitory DREADD (hM4Di) under control of the CaMKII promotor to selectively suppress mPFC glutamatergic pyramidal neurons. GAD67-Cre mice received bilateral intra-mPFC infusion of a Cre-dependent AAV expressing hM4Di to specifically silence GABAergic neurons. hM4Di is an artificial receptor that is selectively activated by clozapine N-oxide (CNO), which leads to inhibition of neurons expressing hM4Di. Chemogenetic suppression of mPFC glutamatergic pyramidal neurons by injecting CNO significantly attenuated both the acquisition and expression of cocaine CPP. In contrast, suppression of mPFC GABAergic neurons affected neither the acquisition nor expression of cocaine CPP.

[Significance and future prospects]

The present study demonstrates that the chemogenetic suppression of mPFC glutamatergic, but not GABAergic, neurons inhibits both the acquisition and expression of cocaine CPP. To our knowledge, this is the first direct evidence showing that activation of glutamatergic pyramidal neurons in the mPFC is causally involved in both the formation and retrieval of cocaine-associated memories. Therefore, mPFC pyramidal neurons are a potential therapeutic target for the treatment of drug addiction.

###

Media Contact
Tomoya Sato
[email protected]

Original Source

https://doi.org/10.1111/adb.12723

Related Journal Article

http://dx.doi.org/10.1111/adb.12723

Tags: AddictionCell BiologyDrugsMemory/Cognitive ProcessesneurobiologyPharmaceutical SciencePhysiologySocial/Behavioral Science
Share17Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.