• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New microscopy method provides more details about nanocomposites

Bioengineer by Bioengineer
April 11, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: US Department of Energy, Ames Laboratory

Scientists at the U.S. Department of Energy’s Ames Laboratory have developed a new microscopy approach for imaging gel nanocomposites in their natural state, which will reveal more useful information about their assembly and properties.

Researchers are excited about imaging nanoparticles in poloxamers, a group of oddly-behaving polymer materials that are liquid at low temperature and a gel at higher temperatures. Because of their interesting phase behavior, these gels show promise in potentially acting as a matrix medium for arrangement of nanoparticles within these gels to obtain materials with interesting optical properties. However, currently, it is very difficult to image nanoparticles within a gel environment.

Like the old idiom “nailing jelly to a wall,” getting a close and accurate look at how these nanoparticle-and-gel systems organized themselves has proven difficult for scientists who want to learn more about their properties and how to control them.

“It’s basically a goo. It’s like honey when cold, and at warmer temperatures it sets into a something like Jello,” said Tanya Prozorov, a scientist in Ames Laboratory’s Division of Materials Sciences and Engineering. “It’s a state of matter that doesn’t lend itself well to the thin samples we use in TEM (transmission electron microscopy). Attempting to look at freeze-dried, thin-layer samples of the gel isn’t ideal; valuable information gets lost.”

Using a new approach with fluid cell scanning/transmission electron microscopy, Prozorov and her colleagues used a molecular printer to deposit miniscule (femtoliter, one quadrillionth of a liter) volumes of poloxamer combined with gold nanoparticles, and observe them under controlled temperature and humidity.

###

The research is further discussed in the paper “New approach to electron microscopy imaging of gel nanocomposites in situ,” authored by Alejandra Londono-Caleron, Skrikanth Nayak, Curtis L. Mosher, Surya K. Mallapragada, and Tanya Prozorov; and published in Micron.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact
Laura Millsaps
[email protected]

Original Source

https://www.ameslab.gov/news/news-releases/new-microscopy-method-provides-more-details-about-nanocomposites

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPharmaceutical/Combinatorial ChemistryPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Surgery Type Influences Nutrition Duration in NEC Infants

January 12, 2026

Skin-Implanted Living Sensor Enables Long-Term Biomarker Tracking

January 12, 2026

Early Parkinson’s Subtypes Identified via EEG-Gait Fusion

January 12, 2026

Delphinidin Eases Neuroinflammation, Behavior in Parkinson’s Mice

January 12, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    69 shares
    Share 28 Tweet 17
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Surgery Type Influences Nutrition Duration in NEC Infants

Skin-Implanted Living Sensor Enables Long-Term Biomarker Tracking

Prenatal Metals, Genes Linked to Birth Size in Taiwan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.