• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Biochemical switches identified that could be triggered to treat muscle, brain disorders

Bioengineer by Bioengineer
April 10, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital scientists have found that the enzymes ULK1 and ULK2 play a key role in breaking down cell structures called stress granules, whose persistence leads to toxic buildup of proteins that kill muscle and brain cells. Such buildup is central to the pathology of three related diseases: inclusion body myopathy (IBM), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

IBM causes weakness in arm and leg muscles. ALS, also known as Lou Gehrig’s disease, causes paralysis due to the death of nerve cells controlling voluntary muscles. FTD is a form of dementia that damages areas of the brain associated with personality, behavior and language.

Led by St. Jude researcher Mondira Kundu, M.D., Ph.D., an associate member of the St. Jude Department of Pathology, the team published their findings online in the journal Molecular Cell.

Stress granules are biological “storm shelters” that temporarily protect genetic molecules and proteins when the cell’s health is under threat from heat, chemicals or infection. Such granules normally disassemble when the stress is removed, but mutations that cause malfunction in the disassembly machinery can cause them to persist. One such mutation is in a gene called VCP, and the St. Jude researchers found that ULK1/2 is a key activator of VCP. Thus, they believe that drugs to boost those enzymes could help treat the pathology of IBM, ALS and FTD.

The other St. Jude authors are Bo Wang, Brian Maxwell, Joung Hyuck Joo, Youngdae Gwon, James Messing, Ashutosh Mishra, Timothy Shaw, Amber Ward, Honghu Quan, Sadie Miki Sakurada, Shondra Pruett-Miller, Peter Vogel, Hong Joo Kim and Junmin Peng. Co-author Tulio Bertorini is with the University of Tennessee Heath Science Center. Co-author J. Paul Taylor is a Howard Hughes Medical Institute Investigator and chair of the St. Jude Department of Cell and Molecular Biology.

The research was supported by the National Institutes of Health (R01 MH115058, HL114697, R01 GM114260, R35 NS097974), the Robert Packard Center for ALS Research and ALSAC, the fundraising and awareness organization of St. Jude.

###

Media Contact
Corey Carmichael
[email protected]

Original Source

http://www.stjude.org/ulk1-ulk2-stress-granules

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2019.03.027

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyMedicine/Health
Share14Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.