• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 2, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Rocket fuel that’s cleaner, safer and still full of energy

Bioengineer by Bioengineer
April 5, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: McGill University

Research published this week in Science Advances shows that it may be possible to create rocket fuel that is much cleaner and safer than the hypergolic fuels that are commonly used today. And still just as effective. The new fuels use simple chemical “triggers” to unlock the energy of one of the hottest new materials, a class of porous solids known as metal-organic frameworks, or MOFs. MOFs are made up of clusters of metal ions and an organic molecule called a linker.

Satellites and space stations that remain in orbit for a considerable amount of time rely on hypergols, fuels that are so energetic they will immediately ignite in the presence of an oxidizer (since there is no oxygen to support combustion beyond the Earth’s atmosphere). The hypergolic fuels that are currently mainly in use depend on hydrazine, a highly toxic and dangerously unstable chemical compound made up of a combination of nitrogen and hydrogen atoms. Hydrazine-based fuels are so carcinogenic that people who work with it need to get suited up as though they were preparing for space travel themselves. Despite precautions, around 12,000 tons of hydrazine fuels end up being released into the atmosphere every year by the aerospace industry.

“This is a new, cleaner approach to making highly combustible fuels, that are not only significantly safer than those currently in use, but they also respond or combust very quickly, which is an essential quality in rocket fuel,” says Tomislav Frišči?. He is a professor in the Chemistry Department at McGill, and co-senior author on the paper along with former McGill researcher Robin D. Rogers.

“Although we are still in the early stages of working with these materials in the lab, these results open up the possibility of developing a class of new, clean and highly tunable hypergolic fuels for the aerospace industry,” says the first author, Hatem Titi, a post-doctoral fellow who works in Frišči?’s lab.

Friscis is interested in commercializing this technology, and will work with McGill and Acsynam, an existing spin-off company from his laboratory, to make this happen.

###

To read “Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: Unlocking the latent energetic behavior of ZIFs” by H.M. Titi et al in Science Advances: 10.1126/sciadv.aav9044

This research was supported by the Air Force Office of Scientific Research, the Canada Excellence Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada and the Canada CFI program. Computations were made on the supercomputer Mp2 from Université de Sherbrooke, managed by Calcul Québec and Compute Canada. The operation of this supercomputer was funded by the Canada Foundation for Innovation (CFI), the ministère de l’Économie, de la science et de l’innovation du Québec (MESI), and the Fonds de recherche du Québec-Nature et technologies (FRQ-NT).

Contact:

Katherine Gombay

Media Relations

McGill University

514-398-2189

[email protected]

http://www.mcgill.ca/newsroom/

http://twitter.com/McGillU

Related video: https://www.youtube.com/watch?v=cPAZp1wM2C8

Media Contact
Katherine Gombay
[email protected]

Original Source

https://www.mcgill.ca/newsroom/channels/news/rocket-fuel-thats-cleaner-safer-and-still-full-energy-295877

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aav9044

Tags: Chemistry/Physics/Materials SciencesMaterialsSatellite Missions/ShuttlesSpace/Planetary Science
Share15Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    114 shares
    Share 46 Tweet 29
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Self-Assembling Peptide Micelles Enable Potent Antifungal Therapy

Ultrahigh-Nickel Cathodes Near Density Limit

TGFβ Boosts Microglial Defense Against Myelin Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.