• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

MSU lands $1.8 million NIH grant to improve brain implants

Bioengineer by Bioengineer
March 29, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of MSU

EAST LANSING, Mich. – Michigan State University has landed a $1.8 million National Institutes for Health R01 grant to improve brain implants – “electroceuticals” used to treat Alzheimer’s, Parkinson’s, depression and traumatic injuries.

The implants decipher complex chemical and electrical input and output that allow patients to bring parts of their brain and body back online. These medical advances have given patients more treatment options, however, there are still drawbacks to the devices that Erin Purcell, assistant professor of biomedical engineering, is working to overcome. The implants’ signaling capacity tends to fade over time, and the biological response to the implants is believed to be a key contributing factor.

“It’s comparable to a cocktail party – except the people represent neurons – and microphones are positioned around the room,” Purcell said. “After a while, scar tissue reacts and blocks the reception. It’s like the microphone gets moved away from the speaker, and the speakers – the neurons – get quieter and talk differently, too.”

Purcell’s team of scientists is working to understand how changes in the neurons’ ability to “speak” act as determinants of the implants’ success.

“MSU is unique in working to unmask new mechanisms of how neuronal activity and connectivity change in response to implanted electrodes,” Purcell said. “Our goal is to reveal new mechanisms of structural and functional plasticity surrounding devices. We also hope to identify key modulators of the reactive tissue response.”

To accomplish these goals, Purcell recruited an interdisciplinary team of experts. The team includes Lee Cox, chair of MSU’s physiology department; John Seymour, University of Michigan; Steven Suhr, Biomilab LLC; as well as an interdisciplinary team of graduate students and post-doctoral fellows. The team brings complementary expertise in imaging, electrode fabrication, molecular biology and electrophysiology to bear on this complex problem.

Purcell’s team in the Regenerative Electrode Interface Laboratory, located in MSU’s new Institute for Quantitative Health Science and Engineering, will home in on two specific mechanisms that may explain changes in neuronal function and loss of synaptic connections surrounding implants.

“Every patient’s reaction to the implants is different, and it’s unpredictable if the devices will last days, weeks or months,” Purcell said. “If we understand the signaling mechanisms that dictate the response, then we can systematically test new ways to make the implant ‘unseen’ in the body and avoid the tissue response.”

###

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact
Layne Cameron
[email protected]

Original Source

http://go.msu.edu/vsH

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Create Algae-Based Biochar Nanoreactor to Combat Persistent PFAS Pollution

Researchers Create Algae-Based Biochar Nanoreactor to Combat Persistent PFAS Pollution

February 4, 2026
Scientists Confirm Vast Reserves of Freshwater Beneath the Ocean Floor for the First Time

Scientists Confirm Vast Reserves of Freshwater Beneath the Ocean Floor for the First Time

February 4, 2026

Revealing “Hidden” Cellular States: A Novel Physics-Based Method for Label-Free Cancer Cell Phenotyping

February 4, 2026

Rydberg Atomic Medium Enables Optical Readout Below Shot-Noise Limit

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insilico Medicine Selects ISM5059, a Peripheral-Restricted NLRP3 Inhibitor, as Preclinical Candidate

Revolutionary Low-Temperature Activation Enables Deployment of Smart 4D-Printed Vascular Stents

Fluorescent Paper Test Revolutionizes Blood Typing, Antibody Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.